

Discovery and Development of Metal Hydrides for Reversible On-board Hydrogen Storage

Mark Allendorf, Eric Majzoub, Vitalie Stavila

Sandia National Laboratories

May 19, 2009

Project ID: ST_03_Allendorf

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project started in March '05
- Project end June 2010
- Percent complete 80%

SNL R&D Budget

- FY08 Funds: \$2.4M
- Planned FY09 Funds: \$2.3M

Barriers

- A. System Weight & Volume, B. Cost, C. Efficiency, D. Durability
- E. Charge/discharge rates
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

MHCoE Partners

BNL, JPL, NIST, ORNL, SRNL, Caltech, GA Tech, OSU, PITT, Stanford, UH, UIUC, UNR, UNB, Utah, HRL, UTRC

Collaborators

V. Ozolins (UCLA), J. Herberg (LLNL), Y. Filinchuk (ESRF), C. Wolverton (Northwestern), J-H Her (U. Maryland)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US ² Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

3

Technical POC and MHCoE Director: Lennie Klebanoff Core Technical Team

Mark Allendorf:Theory, Theory Group CoordinatorEric Majzoub:PEGS theory, experiments (Sandia/UMSL)Tim Boyle:Nanoconfinement (liquid-phase syntheses)Mutlu Kartin:New materials (borohydrides, amides)Vitalie Stavila:New materials (borohydrides, ammine complexes)Joe Cordaro:New materials (nanoconfinement, bulk syntheses)Weifang Luo:New materials, since 03/02/2009Ewa Rönnebro:Departed 02/20/2009

Other Key Contributors

Rich Behrens, Leo Seballos, Ida Nielsen

Ph.D. Students

Rebecca Newhouse (UC Santa Cruz), Godwin Severa (U. Hawai'i), David Peaslee (UMSL)

METAL HYDRIDE CENTER OF EXCELLENCE OF EXCELLENCE OF

Discover, develop and validate "**reversible**" on-board metal hydride storage materials with potential to meet the DOE 2010 targets and a clear path to meeting the 2015 targets. Use theory-directed synthesis with characterization

Prediction of crystal structure prototypes:

- Prototype Electrostatic Ground State (PEGS) technique for structure predictions and rapid ΔH estimates
- First-principles Density Functional Theory (DFT) is used for accurate thermodynamics calculations

Synthesis/sample preparation:

- ✓ Solid-state and solution routes
- ✓ High-energy ball-milling (SPEX)
- ✓ Hot-sintering at high-P (600°C, 2000 bar)

<u>Understanding structural properties</u> / <u>Probing hydrogen release</u> <u>reaction mechanisms</u> / <u>Additives/dopants/catalysts modification</u>:

Powder/Synchrotron XRD, Neutron diffraction, STMBMS, PCT/Sieverts, Raman, FTIR, TGA/DSC, TEM, SEM, EDAX, EELS

Status of Theory in June 2008 and Current Focus

Status in June 2008:

- Modeled structure and thermodynamics in alkali-, and transition metal(TM)-borohydrides using PEGS / first-principles DFT
- Used quantum chemical methods to calculate bond energies of alane complexes (in support of BNL AIH₃ regeneration studies)
- Modeling of alanate energetics in solution initiated

Focus during FY08/FY09:

- Impact of *closo*-borates formation on thermodynamics of Li-, Caand Mg-borohydrides
- Reaction pathways in complex multi-component systems
- Role of gas phase in determining reaction pathways
- Continue the coordination of MHCoE Theory Group (Allendorf)

Collaboration -- SNL / GA Tech / U. Pittsburg

Phase equilibrium calculations can provide valuable insight into complex hydride decomposition chemistry

Gas phase:

- Fuel-cell poisons (e.g. NH₃)
- Storage capacity, reversibility
- Safety (e.g., H_2O or O_2 reactions)
- Possible kinetic role

Condensed phase:

- Multiple stable products
- Parasitic reactions
- Effects of T, P, reaction stoichiometry

Useful results of equilibrium modeling:

- Identify most stable products
- Predict undesirable gas-phase species
- System design and optimal operating conditions

Ki Chul Kim & David Sholl (GA Tech.) Bo Zhang & Karl Johnson (U. Pittsburgh) Mark Allendorf (SNL)

Comprehensive Multi-phase Equilibrium Modeling is Advancing Our Understanding of Metal Hydride Systems

- Gibbs Free Energy minimization
- FactSage package (commercial software)
- Thermodynamic data sources:
 - Gas phase: JANAF Tables
 - Gas-phase $B_nH_m B_{10}H_{14}$

(Yu & Bauer, J. Phys. Chem. Ref. Data 1998)

- Custom hydride data base
 - Li-B-C-Mg condensed phases
 - $-\Delta H_{f}^{o}(298) \Delta S^{o}(298), C_{p}(T)$
 - DFT + phonon calculation

(Kim & Sholl results, 2008)

- Examples of possible calculations:
 - Constant (T,p), (T,V), (T,H)
 - Phase diagrams
 - Thermodynamics of individual reactions

Temperature (K)

Polynomial fit to C_p for MgH₂ Data from DFT and phonon calculation (Kim & Sholl, 2008)

LiNH₂ (+ LiH): Prediction of Significant Gas-phase Impurities

Nominal reactions:

$$\begin{split} \mathsf{LiNH}_2 &\leftrightarrow \mathsf{0.5Li}_2\mathsf{NH} + \mathsf{0.25N}_2 + \mathsf{0.75H}_2\\ \mathsf{LiNH}_2 + \mathsf{LiH} &\leftrightarrow \mathsf{Li}_2\mathsf{NH} + \mathsf{H}_2\\ \mathsf{2LiNH}_2 &\leftrightarrow \mathsf{Li}_2\mathsf{NH} + \mathsf{NH}_3 \end{split}$$

Conditions for calculation:

- 1 mole LiNH₂ (+1 mole LiH)
- Constant T, Constant V (10 L)
- Gas phase: H₂, NH₃, N₂, Li, Li₂, LiH

> Results:

- N₂ and NH₃ predicted to be significant byproducts
- LiH addition:
 - Scavenges nitrogen to enhance H₂ yield
 - Reduces NH₃, but only at T > 360 °C
- Experiments confirm NH₃ formation but suggest kinetic barrier to N₂ formation

Model phase equilibria for general hydride categories:

- Hydride + C
- Nitrogen-containing hydrides
- Boron-containing hydrides
- Model the following destabilized reactions:
 - 2LiNH_2 + C → Li_2CN_2 + 2H_2
 - 2C + Mg(BH₄)₂ → MgB₂C₂ + 4H₂
 - − BN + 4Mg(BH₄)₂ → 3MgH₂ + MgB₉N + 13H₂ $\Delta U(0 \text{ K}) = 51.2 \text{ kJ/mol H}_2$
- Incorporate multiple gas-phase species approach into U. Pittsburgh / Georgia Tech screening code

Future Work: Model Equilibria for Most

Important Metal Hydride Materials

-- see more details in ST08 by K. Johnson (Univ. Pittsburgh) -- see our additional slide #30

Journal article describing results is in preparation

 $\Delta U(0 \text{ K}) = 31.4 \text{ kJ/mol H}_2$ $\Delta U(0 \text{ K}) = 43.1 \text{ kJ/mol H}_2$

Sandia National Laboratories

Investigation of LiSc(BH₄)₄ Validates PEGS method with TM-borohydrides

Collaboration -- SNL / JPL / Caltech / UCLA

- > Solid-state NMR indicates formation of ScB_2 , $[B_{12}H_{12}]^{2-}$ on desorption
- PEGS predicted structures:

 $Sc(BH_4)_3$: C222₁ $Sc_2[B_{12}H_{12}]_3$: Cm $LiSc(BH_4)_4$: I-4

Complicated decomposition pathway predicted using PEGS structures consistent with experimental measurements

Ref: C Kim, S-J Hwang, RC Bowman, Jr., JW Reiter, JA Zan, JG Kulleck, H Kabbour, EH Majzoub, V Ozolins, J. Phys. Chem C, accepted (2009)

Synthesis:

Theoretical and Experimental Search for Alkali-Ti-(BH₄)_x Collaboration -- SNL / UTRC

Stabilize Ti(BH₄)₃ through addition of alkali metals, and/or confinement in nano-frameworks

 $\begin{array}{ccc} \text{TiX}_{4} & \stackrel{\text{LiBH}_{4}}{\longrightarrow} & \text{Ti}(\text{BH}_{4})_{3} & (\text{X= CI, Br})^{*} & \text{Completed }\checkmark \\ \text{Ti}(\text{BH}_{4})_{3} + \text{MBH}_{4} & \longrightarrow & \text{MTi}(\text{BH}_{4})_{4} & (\text{M= Li, Na}) & \text{In progress} \end{array}$

METAL HYDRIDE CENTER OF EXCELLENCE with PEGS and Confirmed with XRD

Collaboration -- SNL / NIST

Evidence of diborane and *closo*-borates formation during borohydride desorption reactions prompts further analysis of [B₁₂H₁₂]²⁻ salts*

Collaboration -- SNL / UMSL / UCLA / Northwestern

 First-principles DFT calculations determine compound thermodynamics while Gibbs' free energy calculations determine reaction critical temperature (T_c= T_{1bar} of H₂), ΔH and thermodynamically possible products

Desired desorption products for $Ca(BH_4)_2$ and $Mg(BH_4)_2$ are CaB_6 and MgB_2 But:

- > Mg[B₁₂H₁₂] formation <u>lowers</u> capacity of Mg(BH₄)₂ from 14.9 to 8.1 wt% H₂
- Ca[B₁₂H₁₂] formation <u>lowers</u> capacity of Ca(BH₄)₂ from 9.6 to 6.3 wt% H₂

Possible Reactions	Theoretical wt% H ₂	ΔΗ ^{300K}	Т _с (°С)
$Mg(BH_4)_2 \rightarrow MgB_2 + 4H_2$	14.9	38.8	75
$6Mg(BH_4)_2 \rightarrow Mg[B_{12}H_{12}] + 5MgH_2 + 13H_2$	8.1	29.3	20
$3Ca(BH_4)_2 \rightarrow CaB_6 + 2CaH_2 + 10H_2$	9.6	40.8	94
$6Ca(BH_4)_2 \rightarrow Ca[B_{12}H_{12}] + 5CaH_2 + 13H_2$	6.3	39.2	99

Ref: V Ozolins, EH Majzoub, C Wolverton, J. Am. Chem. Soc., v131(1), p 230 (2009)

A predicted desorption pathway of $Ca(BH_4)_2$ involves $Ca[B_{12}H_{12}]$, and is therefore consistent with loss of capacity on each cycle observed in sorption experiments

METAL HYDRIDE CENTER OF EXCELLENCE Enthalpy at the Same Pressure

Entropy of H₂ gas (130 J/Kmol H₂ at 20 °C, 1 bar) commonly dominates. Products with fewer anions or tightly bound bulk phase reduce the number of low frequency phonon branches and decreases Δ S to ~ 100 J/K mol H₂ for the following reactions:

New Candidate Destabilized Reactions: Ref: V Ozolins, EH Majzoub, C Wolverton, J. Am. Chem. Soc., v131(1), p 230 (2009)

Predicted Reactions	Theoretical wt% H ₂	∆H ^{300K} kJ/mol H ₂	T _c (°C)	SNL Data: wt% H ₂ (350°C, 4h)
$5Mg(BH_4)_2 + 2LiBH_4 \rightarrow Li_2[B_{12}H_{12}] + 5MgH_2 + 13H_2$	8.4	24.4	-29	6.0
$5Mg(BH_4)_2 + Ca(BH_4)_2 \rightarrow Ca[B_{12}H_{12}] + 5MgH_2 + 13H_2$	7.7	25.7	-18	4.4
$5Ca(BH_4)_2 + 2LiBH_4 \rightarrow Li_2[B_{12}H_{12}] + 5CaH_2 + 13H_2$	6.7	37.9	83	6.2

Kinetic barriers for new reactions are unknown

Experimental Comparison of $5Ca(BH_4)_2 + 2LiBH_4$ vs $Ca(BH_4)_2$ Systems:

Although the kinetics improved slightly and the desorption temperature was lowered ~50 °C, a significant capacity loss *via* cycling still remains

Theory Milestones

Month/year	Milestone or Go/No-Go decision: Al-Adduct Theory
May-08 🗸	Milestone: Complete BAC calculations of alane-amine complexes
Sep-08 🗸	Milestone: Complete BAC calculations on alane-adduct complexes
Dec-08 🗸	No-go: Model reactions of alane-amine surface interactions
May-09	Milestone: Complete calculations on alanate-amine complexes
Sep-09	Milestone: Complete calculations on alanate-ether adducts
Month/year	Milestone or Go/No-Go decision: Alanate/Borohydride Theory
Jan-09 🗸	Milestones: (1) Structural modeling of TM-containing borohydrides. (2) Extension of PEGS method to nanoparticle hydrides
Feb-09 🗸	* No-go: Discontinue surfactant templating for nano-scale alanates/borohydrides
Jul-10	Milestone: Finish alkali-TM borohydride structure and stability calculations
Nov-10	Go/no-go: Discontinue alkali-TM borohydrides if no suitable materials found

Discovery and Characterization of New Materials

Status in June 2008:

- Determined the phase transitions of Ca(BH₄)₂ polymorphs at different temperatures (--see our additional slide #32)
- > Demonstrated the partial reversibility of $Ca(BH_4)_2$ at 100 bar and 350°C
- Initiated additive screening for Ca(BH₄)₂
- Theory predicted bi-alkali borohydrides, AK(BH₄)₂ (A= Li, Na), were synthesized but not pursued further due to poor thermodynamics

Focus during FY08/FY09:

- \succ Elucidate the reaction mechanism and decomposition products of Ca(BH₄)₂
- > Complete $Ca(BH_4)_2$ additive study, ΔH determination: Make go/no-go decision
- Syntheses and characterization of PEGS-predicted *closo*-borates and new BH₄/NH₃, BH₄/NH₂, BH₄/AIH₄ systems
- Re-hydrogenation of Mg(BH₄)₂ utilizing Sandia high-pressure capability (--see our additional slide #33, --see ST07-UH)
- Incorporation of hydride materials in catalyzed nano-framework structures (NFS) to improve kinetics (--see our additional slide #34, --see ST10-UTRC)

Effect of Additives on Cycling EXCELLENCE CAPACITY AND KINETICS OF Ca(BH₄)₂

- 30 different additives screened
- \succ ∼6 wt% H₂ released in 1 hour at 350 °C

Additives do not significantly improve kinetics of Ca(BH₄)₂
 Significant capacity loss observed on subsequent cycles

Collaboration -- SNL / Caltech - JPL

¹¹B NMR reveals the presence [B_nH_m] species and their accumulation upon cycling (-- see also our additional slide #35)

Separate experiments show that Ca[B₁₂H₁₂] cannot be hydrogenated or dehydrogenated under the conditions tested (-- see our additional slide # 36)

17

Although the thermodynamics for Ca(BH₄)₂ are reasonable (measured Δ H_{desorption} = 20 – 30 kJ/mol H₂ by DSC)*, we have made a decision to "down-select" Ca(BH₄)₂ as a hydrogen storage material, because:

- > It is only partially reversible due to " $B_n H_m$ " formation
- It is kinetically limited
- Catalysts do not improve the rate of hydrogen desorption below 300 °C
- The observed maximum desorption capacity, up to 350 °C, is less than ~ 7 wt %

:. We will not pursue $Ca(BH_4)_2$ further as a hydrogen storage material

New M(BH₄)-NH₃ Materials Synthesized and Characterized

Motivation: Based on promising results reported for Mg(BH₄)₂•2NH₃ (Zhao *et al.*) other metal-borohydride-ammonia systems were investigated

-- see other details on the Ca(BH₄)₂-NH₃ system in STP37 by G. Brown (ORNL)

Month/year	Milestone or Go/No-Go decision
Oct-08 🗸	Go: Successfully coated the catalyzed NFS substrate with metal hydride via solution route. Milestone: Complete PCT isotherms for $Ca(BH_4)_2$ to determine reaction enthalpy
Jan-09 🗸	Milestone: Synthesize $Ca(BH_4)_2/NH_3$ system No-go: On further work on $Ca(BH_4)_2/NH_3$ system Milestone: Complete STMBMS characterization of $Ca(BH_4)_2$ No-go: La-doped CaB_6 , but the efforts shifted towards C-doping of MgB ₂
Mar-09 🗸	Milestone: Lowering of Ca(BH ₄) ₂ desorption temperature No-go decision made on Ca(BH ₄) ₂
April-09 🗸	Milestone: Complete additive screening study of MHCoE borohydride Milestone: Discover new borohydride related materials In progress
May-09	Go/no-go on A-TM-(BH ₄) _x : Reversibility of alkali transition metal borohydrides
June-09	Go/no-go: Continue with mixed $Ca_{(1-x)}M_x(BH_4)_z$ materials if reversibility has been shown at improved P and T compared to $Ca(BH_4)_2$ Go/no-Go: to incorporate the hydride material into the NFS <i>via</i> a solid-state route, (50% loading of a hydride material with a hydrogen storage capacity greater than 5% in NFS)
Sep-09	Milestone: Incorporation of hydride material in catalyzed nano-frameworks
Oct-09	Milestone: Complete additive screening study of MHCoE of mixed amide/borohydride

Theory:

- Developed phase equilibria theoretical technique, applied to LiNH₂ (+LiH) and (LiBH₄ + C)
- > Predicted structures of $[B_{12}H_{12}]^{2-}$ intermediates and their effect on reaction pathways
- PEGS structure predictions of transition-metal borohydrides

Calcium Borohydride:

- > Completed additive screening of $Ca(BH_4)_2$ and studied the cycling behavior
- Revealed that $B_n H_m$ species limit the reversibility of $Ca(BH_4)_2$
- Probed reaction pathway and kinetics of Ca(BH₄)₂ using STMBMS (-- see our additional slides #38, 39)
- Made No-Go decision on Ca(BH₄)₂

New Materials:

- Synthesized [B₁₂H₁₂]²⁻ salts with various cations to examine their influence on the hydrogen release in borohydride systems in conjunction with theoretical predictions (-- see our additional slide #36)
- Synthesized new MM'(BH₄)_x/(NH₃)_y and MM'(BH₄)_x/(NH₂)_y compounds and assessed their hydrogen storage properties (-- see our additional slide #40)
- Synthesized Ca(AIH₄)/(BH₄) and predicted high symmetry solid-state structure (-- see our additional slide #41)
- Examined C-dopant effects on MgB₂ hydrogenation (-- see our additional slide #35)
- > Initiated the incorporation of $Ca(BH_4)_2$ in a C-aerogel and characterized hydrogen release

Theory:

- Model phase equilibria for promising metal hydride materials
- Complete calculations on alanate-ether adducts
- > Examine phase stability and the reactions of TM-containing borohydrides
- Conduct PEGS search for mixed-anion borohydride materials

New Materials:

- Synthesis and characterization of PEGS predicted new BH_4/NH_3 , BH_4/NH_2 and BH_4/AIH_4 compounds (-- see our additional slides #40,41)
- Explore new mixed-metal borohydride systems

Incorporation of Hydrides into Nano-frameworks:

- > Metal borohydride incorporation into nano-frameworks *via* solution routes
- Characterize metal borohydride incorporation into catalyzed and uncatalyzed nano-frameworks (-- see ST10-UTRC)

MHCoE Partners:	
 BNL: J. Wegrzyn, J. Graetz Caltech: SJ. Hwang, C. Ahn HRL: J. Vajo, P. Liu GA Tech: D. Sholl JPL: J. Reiter, J. Zan NIST: T. Udovic, U. Kettner OSU: JC. Zhao SRNL: D. Anton, R. Zidan U. Hawai'i: C. Jensen U. Illinois: I. Robertson, D. Johnson UNR: D. Chandra U. Pitt: K. Johnson U. Utah: Z. Fang UTRC: X. Tang, D. Mosher, S. Opalka 	Other Collaborations:> ESRF:Y. Filinchuk> LLNL:J. Herberg> Northwestern:C. Wolverton> UCLA:V. Ozolins> U. Geneva:K. Yvon> U. Maryland:JH. Her

Additional Slides

-- see more details in ST08 by K. Johnson (Univ. Pittsburgh)

Motivation: Surfactant micelles offer potential for incorporation of MH in the nanoscale

- > Nanoparticle Production *via* Surfactant Templating
 - $H_2O/AOT/decane$ solutions with NaBH₄/H₂O produced ~10nm particles
 - No suitable THF/surfactant analogs found for alanates/borohydride inclusion
 - Problems with scalability and separation of surfactant excess prevents quantitative characterization

Method down-selected, do not pursue further

Identified Phase Transitions of Four Polymorphs of Ca(BH₄)₂

[†] EH Majzoub, E Ronnebro, *J. Phys Chem C, 113 (8), pp 3352* **(2009)** [‡]Y Filinchuk, E Ronnebro, D Chandra, *Acta Materialia, 57, p732* **(2009)**

33

I. Demonstrated the reversibility of the decomposition products by hydrogenation (Sandia high-pressure capability), in collaboration with U. Hawaii:

 $MgB_2 + 4H_2 \longrightarrow Mg(BH_4)_2 \quad 400 \ ^{\circ}C, 950bar$

II. Destabilizing Mg(BH₄)₂ with C-doping to improve hydrogen storage properties

Current Status: Synthesized doped-MgB₂ from Mg + B + C (dopant-level) and hydrogenated $MgB_{(2-x)}C_x$ precursor to form Mg(BH₄)₂ structure

Summary: MgB₂ successfully doped with C, subsequently hydrogenated to make Mg(BH₄)₂

- **Future Work:** Confirm the presence of carbon in $Mg(BH_4)_2$ (NMR, XPS)
 - Improve the yield to measure the hydrogen capacity of C-doped $Mg(BH_4)_2$
 - Doping $Mg(BH_4)_2$ with transition metals

Methods for Incorporation of Hydride Materials into NFS

34

Current Status: Collaboration -- SNL / UTRC / Albemarle Corp.

- Solution deposition of hydride materials
 - Porous materials (YSZ, C-aerogel) were treated with concentrated solutions of metal hydride
 - Varied solvent (THF, DME, pyridine), exposure time, and drying conditions
 - Results indicate that a super saturated solution can yield up to 50% incorporation by weight, however, H₂ desorption was low
- Solid-state (incipient or melting) incorporation
 - Selected three porous materials (C-aerogel, YSZ, SiO₂) and exposed to metal hydride melt
 - Used high-energy ball milling or high temperature/pressure to mix
 - Ca(BH₄)₂ wets surface of carbon aerogel but retention in the nano-framework structure has not been confirmed

Future Work:

- > Determination of incipient wetting via melting experiments
- Solution deposition gives highest loading but effects on hydrogen desorption are marginal – propose alternative NFS or hydride materials

-- see more details in ST10 by X. Tang (UTRC)

Theory predicts that $Ca(BH_4)_2$ releases H_2 to form $Ca[B_{12}H_{12}]$ upon heating

XRD indicates crystalline component is largely CaH_2 in desorbed product, while ¹¹B NMR indicates the presence of amorphous CaB_6 and " B_nH_m " species

Enthalpy measurements for the decomposition have been measured using Differential Scanning Calorimetry (DSC)

Pressure-Composition-Isotherms (PCI) measurements are ongoing

TGA-DSC of Ca(BH₄)₂*

Desorption Isotherm at 354 °C**

STMBMS experiments confirm that H₂ is the predominant product (-- see our additional slide #39)

STMBMS*: A New MHCoE Capability to Elucidate Complex Reaction Processes

* Simultaneous thermo-gravimetric modulated-beam mass spectrometer

This instrument, developed for our national security work, is used to study reaction kinetics of complex systems

Instrument details:

- Knudsen effusion cell installed within a furnace and upon a microbalance
- Simultaneous modulated molecular beam mass spectrometer provides time-dependent species info
- High accuracy FTMS for species identification

Data:

- Species
- Number density
- Rate of evolution
- Partial pressure
- Temperature

Data is correlated and analyzed to determine reaction processes and kinetics

Ref: R Behrens, Jr., Review of Scientific Instruments, *58(3), p451* (1987) YT Lee, *et al*, Review of Scientific Instruments, *40(11), p1402* (1969)

A variety of gaseous species observed during decomposition process (*i.e.* BH₃)
 Lower temperature hydrogen release observed for catalyzed-Ca(BH₄)₂

- > H₂ released in multiple steps from Ca(BH₄)₂
- > Additives modify the kinetics and increase the amount of BH_3 released (~1% of H_2 stream)

Motivation: Search for new high capacity hydrogen storage materials

Ball-milled various molar-ratio mixtures of borohydride, amides and binary hydrides to form compounds with intermediate hydrogen capacities

Selected XRD Results:

- ➤XRD indicates that the starting materials, M(BH₄)_x and M'(NH₂)_y, are no longer present and new phases form
- ➢Raman spectroscopy indicates the presence of (BH₄)⁻ and (NH₂)⁻ anions, ~2300 and ~3250 cm⁻¹, respectively

Characterization of hydrogen storage properties is on-going

Exploration of Mixed-Anionic AIH₄/BH₄ Sandia System: Ca(AIH₄)(BH₄)

Motivation: Alanates generally have better reversibility compared to pure borohydrides

- > Synthesis: LiAlH₄ + LiBH₄ + CaCl₂ → Ca(AlH₄)(BH₄) + 2 LiCl
- > XRD indicates no LiBH₄ or LiAIH₄
- > Raman spectroscopy indicates (BH_4) , (AIH_4) anions present in product
- Initial studies show no reversibility at 200°C, 65 bar H₂ pressure, experiments ongoing

 $M(AIH_4)/(BH_4)$ are promising new hydrogen storage materials