

Chemical Vapor Synthesis and Discovery of H₂ Storage Materials: Li-Mg-N-H System

Z. Zak Fang and H. Y. Sohn University of Utah

Project ID ST_04_Fang

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start March 2005
- Finish March 2010
- Percent complete 80%

Budget

- Total project funding DOE share: ~\$1.0MM Contractor share: \$250K
- Funding received for FY08: \$150K
- Planned Funding for FY09: \$200K

Barriers

- Reversible hydrogen content not sufficient (MYPP Barrier A),
- Inadequate kinetic properties (MYPP Barrier B)
- Desorption T's too high (MYPP Barrier (MYPP Barrier B)

Partners

- JPL, CalTech, GE, UNR, U Hawaii, SNL, SRNL, ORNL, U Pitt, CMU, Georgia Tech, Intematix,
- Project Lead: U of Utah

Objectives and Impact

Overall

- Discover new solid hydrides that meet reversibility and kinetics requirements
- Develop chemical vapor synthesis process (CVS) for production of nanosized solid metal hydrides
- Demonstrate the effectiveness and unique properties of nanosized solid hydride materials

FY08-09

- Determine thermodynamic properties of hydrogen storage using the ternary nitride material LiMgN
- Understand mechanisms of hydrogenation and dehydrogenation of LiMgN,
- Quantify NH₃ content during dehydrogenation of hydrogenated LiMgN
- Demonstrate effects of nanoscale particle size on properties of metal hydrides.

Approach

- Exploit potentials of ternary nitrides.
- Use an ultra-high-energy high pressure milling method and a chemical vapor reaction technique for synthesis of nano particles and study of the effect of nanosize scale (≤ 10 nm).
- Discover and identify new candidate materials through collaborations with MHCoE Theory Group.
- Using a two-step strategy for identifying research path among multiple candidate materials:
 - rapid-screening using in-house tools (e.g. TGA, XRD)
 - *in-depth study by collaborating with MHCOE partners* (NMR, in-situ XRD etc),
- Implement a criteria based on ΔH for select/down-select candidate materials.

Milestones and Go/No-go Decisions

Month/Year	Milestone or Go/No-Go Decision	Milestone Status
April – 06	Milestone: Complete design and set-up of the chemical vapor synthesis reactor systems and demonstrate their feasibility.	Achieved.
September – 08	A No-Go decision was made on Li ₃ AlH ₆ +3LiNH ₂ system because the Δ H of the dehydrogenation reaction is to high (~60 KJ/mol.H ₂)	Completed
March – 2010	Go/No-Go Decision will be made on LiMgN based on comprehensive characterizations of the thermodynamic and kinetic properties of LiMgN with additives.	50% complete
March - 2010	Milestone: Full report, conclusions, and recommendations on selected materials.	_
		5

Two promising materials discovered in the past two years:

I. Reactions of LiNH₂ with lithium alanate materials

 $Li_3AlH_6 + 3LiNH_2 \longleftrightarrow Al + 3Li_2NH + \frac{9}{2}H_2$

-- Expected to have theoretical hydrogen capacity in the 6-7 wt% range, coupling known reactions...

II. Reactions Leading to LiMgN

 $MgH_2 + LiNH_2 \rightarrow LiMgN + 2H_2$

-- Theoretically predicted by MHCoE partners (Johnson, Sholl, Alpati) to have $\Delta H = 32kJ/molH_2$, with 8.2% theoretical hydrogen capacity.

* Alapati, S.V.; Johnson, K.J., Sholl, D.S. J.Phys.Chem., 2006, 110, 8769

Amide Go/No-go Decisions

Decided <u>not</u> to pursue further $Li_3AIH_6/3LiNH_2$ material (it was down-selected)

Decided to focus on LiMgN:

- Potential H₂ storage capacity (theoretical 8.2*wt*%) is higher than that of Li₃AlH₆/3LiNH₂
- Predicted ΔH of LiMgN reaction is more desirable
- Dehydrogenated product (LiMgN) is one single compound, rather than a mixture, perhaps simpler?
- Better kinetics than Li₃AlH₆/3LiNH₂

LiMgN Status at 3/2008 (last annual review)

- 1. LiMgN can be hydrogenated at T ~180 °C, confirmed by SRNL
- 2. ¹H, ⁶Li NMR data (JPL/Caltech) reveal complex LiMgN hydrogenation pathways
- 3. In-situ XRD studies (GE) of hydrog./dehydrog. indicate overall reaction scheme:

Synthesis of Pure LiMgN

Since last AMR, we invested a significant amount of time on the synthesis of pure LiMgN from LiNH₂+MgH₂

$$MgH_2 + LiNH_2 \rightarrow LiMgN + 2H_2$$

Then, once we found the route to pure LiMgN, we focused on:

- Reversibility and Capacity
- > Thermodynamics
- Kinetics
- Reaction pathways

Low-energy Milling Produces Pure LiMgN

Gentle low-energy milling using a jar-rolling set-up preserves the LiNH₂/MgH₂ mixture, without premature release of H₂

Reaction of the mixture during subsequent heating will produce pure (98.99%) LiMgN **FT-IR results**: N-H bond transformation during the low-energy ball-milling

Note: High-energy milling is not suitable for synthesis of LiMgN due to premature release of H₂ and production of mixed nitride products

Thermodynamics: Measured ΔH of dehydrogenation from LiMgN precursor validating Johnson/Sholl predictions.

DTA curve of the dehydrogenation reaction of $LiNH_2+MgH_2 \rightarrow LiMgN+2H_2$

- One reaction step detected during the dehydrogenation of LiNH₂+MgH₂
- The ∆H value for the reaction is 33.5 kJ/mol H₂, which is close to the theoretically predicted reaction enthalpy of 29.7 (31.9) kJ/ mol H₂ reported by Alapati¹ et al.

1. Alapati, S. V.; Johnson, K. J.; Sholl, D. S. *J. Phys. Chem. B* **2006**, *110*, 8769.

Thermodynamics: Measured ΔH of dehydrogenation from hydrogenated LiMgN is close to what is deemed "ideal" range.

DTA curve of the dehydrogenation reaction of hydrogenated-LiMgN

- Two reaction steps detected during the dehydrogenation of the hydrogenated LiMgN sample
- ➤ The ∆H values for the two reactions are 15.35 and 23.56 KJ/mol H2 respectively.

Charge:

LiMgN Is reversible. But cycle capacity is affected by kinetics and pressure of adsorption.

Notes:

Complete desorption was achieved by desorbing into vacuum first, then evacuate, and desorb into vacuum again effects of back pressure and kinetics to be sorted out.

Recharge of LiMgN Is pressure dependent. >140 bar is required to fully recharge the material.

LiMgN Isothermal Adsorption at 180 °C under different H₂ pressure

Common equation for crystallization and solid phase transformation processes

- Def. $\alpha(t)$ = fraction transformed = f
 - $\alpha(t)=1-\exp(-ktn)$ $d\alpha/dt=k*nt^{(n-1)*}exp(-kt^n)$

-
$$\ln(-\ln(1 - \alpha)) = n\ln(t) + \ln(k)$$

 Transformations between different linear segments indicative of changes in reaction mechanism

Evidence of multi-step reaction mechanism observed

Kinetic rate of H_2 release and uptake using LiMgN are within an order of magnitude of the targets, but the temperature is still too high

0.667 mol% TiCl ₃ (4 wt%)		Rate [g H ₂ / (s·g _s)]	Rate 72 kg bed [*]	4 mol% TiCl ₃ (13.7 wt%)		Rate [g H₂ / (s·g₅)]	Rate 72 kg bed*
Р	150 bar	Charge		Р	150 bar	Cha	arge
	160°C	2.0 x 10 ⁻⁵	1.43		160°C	1.9 x 10⁻⁵	1.40
Temp	180°C	2.4 x 10 ⁻⁵	1.73	Temp	180°C	2.5 x 10⁻⁵	1.80
	200°C	1.9 x 10⁻⁵	1.38		200°C	2.3 x 10⁻⁵	1.68
	220°C	1.7 x 10⁻⁵	1.26	Temp	180°C	Cha	nrge
Temp	160°C	Charge			70 bar	6.0 x 10 ⁻⁶	0.430
	70 bar	4.6 x 10⁻ ⁶	0.330	Р	100 bar	1.2 x 10⁻⁵	0.882
Р	100 bar	1.2 x 10 ⁻⁵	0.811		150 bar	2.5 x 10⁻⁵	1.80
	150 bar	2.0 x 10 ⁻⁵	1.43		Disch	narge	
Discharge				T = 280°C	P = 1 bar	2.4 x 10⁻⁵	1.72
T = 280°C	P = 1 bar	1.0 x 10 ⁻⁵	0.737	*Assumes 7 wt% with 5 kg H ₂ stored			

•>6 w% cyclic hydrogen charging observed

•Catalyst loading has significant effect on discharge rate

•Catalyst loading has little effect on charging rate

•Charging rate is strongly pressure dependent

•Terminal compound tentatively identified as Li_{0.51}Mg_{2.49}N_{1.83} awaiting IR confirmation

4 mol% material discharge rate is 57% of DOE technical target at 280 °C
4 wt% material is10% of target charge rate at 180 °C

NH₃ release from Hydrogenated LiMgN

- NH₃ 113ppm in the H₂ stream when heating rate is slow, as measured by TGA and pH- ion meter.
- \triangleright NH₃ concentration is dramatically increased when the heating rate is increased.
- Will conduct isotherm measurements as the next step.

Summary of Ternary Nitride LiMgN:

- > Reversible,
- Reversible capacity 6-8wt%
- > Thermodynamics: $\Delta H = 33-38 \text{ KJ/mol.H}_2$,
- ➢ Kinetics Reasonable at 280 °C.
- NH₃ issue: ~14 ppm in H₂ stream, Cumulative ~100 ppm.
- Must reduce the reaction temperature. Efforts underway to use additives and nano engineering.

Effects of nano size scale: MgH₂-8_{mol}%TiH₂, particle size – 5-10 nm

Excellent stability after 100 cycles at 290 °C. ~6.0 wt% reversible capacity.

Effects of nano size scale: MgH_2 -8mol%TiH₂, particle size – 5-10 nm

Particle size very stable during cycling in the presence of TiH_2 .

TEM Images show the size of crystallites <10 nm after cycling.

 ΔS (J/mol

 H_2)

-135.1

-125.6

-133.9

-126.9

-118.3

-123.4

-104.1

21

 $\Delta H (kJ/K mol H_2)$

-74.6

-70.8

-75.6

-68.2

-65.5

-64.9

-53.4

Effects of nano size scale: MgH_2 -8_{mol}%TiH₂, particle size – 5-10 nm

Using nano size (5-10 nm) and TiH₂ additives, the Δ H value was changed, but so was Δ S. The net effect on Δ G very small. Thus, P_{eq}, did not change significantly.

	1000/	T (1/K)	
1	.4 1.5 1.6 1.7	1.8 1.9 2	2.1 2.2
-1.5	Experimental Data,Utah Experimental Data,Utah	xperimental Data, HRL	Mg ₂ Ni, (MRS Bull. Sept. 2002)
-1 -	y = -3.5606x + 6.6302 y MgH2-TiH2-HEHP M	= -3.4218x + 6.1792 gH2-TiH2-HEHP	Mg ₂ Ni, (Sandia Database)
-0.5 ·	y = -3.9495x + 6.9932 pure MgH2 HSC calculation		MgH ₂ -TiH ₂ -HEHP (Exp. Data, HRL)
g P/P ⁰⁾	Pure MgH2, MRS bulletin review paper		MgH ₂ -TiH ₂ -HEHP (Exp. Data, U Utah)
0 -	Sandia Database y = -3.702x + 6.559		Pure MgH ₂ , (HSC calculation)
0.5	y = -3.8938x + 7.055 Pure MaH2	MRS bulletin revie	Pure MgH ₂ , (MRS Bull. Sept. 2002)
1 -	San	4352 Pure MgH ₂ , (Sandia Database)	
1.3	y = - Mg2	3.3908x + 6.4426 Ni	System
15.			

- Collaborations with the MHCOE Theory Group (U Pitt and Georgia Tech) on reactions mechanisms of hydrogen reactions based on LiMgN,
- Collaboration with SRNL on kinetics of LiMgN
- Collaborations within MHCOE (JPL, Cal Tech) on using NMR for in-depth characterizations,
- Collaborate with Univ of Nevada-Reno on detailed study of phase transformations in Li-Mg-N-H systems.
- Collaborations with SNL on non-equilibrium Mg-Ti-H.
- Collaboration with MHCoE Additive Screening Group on finding additives to improve kinetics.

FY 2009 -2010:

- Search for LiMgN additives to lower H₂ release temperature
- Thermo and kinetic studies of LiMgN with additives cycling using PCT instrument
- Explore techniques (thermal, chemical) to minimize NH₃ release during H₂ desorption
- Continue to search new materials based on new concepts.

Relevance Discovering and synthesis of solid hydrides that can reversibly store hydrogen.

Approach Exploit potentials of ternary nitrides.

Technical Accomplishments and Progress

Characterized and studied thermodynamic and kinetic properties of reversible H_2 storage using LiMgN. Demonstrated effects of nanosize scale (10 nm) on cyclic H_2 storage of MgH₂ with TiH₂ additive with greater than 6wt% capacity.

Technology collaborations Active partnership with theory and analytical characterization group.

Future planInvestigate effects of additives on kinetics of H_2
storage using LiMgN.Investigate the potential of a new class of materials for
 H_2 storage (to be disclosed).24