

Aluminum Hydride Regeneration

Jason Graetz, J. Wegrzyn, J. Johnson, Y. Celebi, WM Zhou and J. Reilly

Brookhaven National Laboratory

Project ID #st_05_graetz

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- 80 % complete

Budget

- Expected total project funding: – \$4.00M (DOE)
- Funding received in FY08
 - \$1.125M (DOE)
- Planned Funding for FY09
 - -\$1.25M (DOE)

Barriers

MYPP Section 3.3.4.2.1 On-Board

Storage Barriers

- A. Weight & Volume
- B. Cost
- C. Efficiency
- D. Durability/Operability
- E. Charge/Discharge Rates
- **R.** Regeneration Processes

Partners and Collaborators

- Project D (aluminum hydride) Lead
 UH-UNB, ORNL, SRNL, SNL
- Other collaborations: JPL, UIUC, ANL
- Chemical Hydride Center
- International Energy Agency (IEA)

BROOKHAVEN NATIONAL LABORATORY

Relevance: AIH₃

- Decomposition rates tuned through particle size and coatings
- High purity H_2 AIH₃ decomposes to AI and H_2 (no side reactions)
- Cyclability Offboard regeneration may reduce cycling problems
- Regeneration will be challenging, but intrinsic energy costs are low

MHCoE Project D - Aluminum hydride (Lead: Jim Wegrzyn, BNL)

Approach

Objective: Meet 2010 DOE technical performance targets using kinetically stabilized aluminum-based hydrides (e.g. $LiAIH_4$ and AIH_3)

- Develop low-energy (≤73 kJ/H₂ or 30% of fuel energy) regeneration routes to prepare kinetically stabilized hydrides from the spent fuel
- 2. Assist the engineering design for an off-board system based on a kinetically stabilized hydride
- Challenge: Hydrides are thermodynamically unstable at 300K
 - 1. How do we control the H_2 evolution? One solution may be a pumpable slurry but how will this impact H_2 rates and capacity?
 - 2. Can we regenerate these hydrides from the spent material using a low cost and low energy process?

Two-step approach to regeneration of AI-based hydrides:

Step I: Alane stabilization - Form stabilized alane complex by direct hydrogenation of catalyzed AI and complexing agent (e.g. amine) **Step II**: Remove stabilizing species and recover AIH₃

Approach / Accomplishments: Theory Guided Research

- High-level electronic structure calculations guide selection of alane complexation agents
- Problem: what is the best electron donor to stabilize AIH₃ in solution? **Compute complexation energies** $AIH_3:(L)n (n = 1 \text{ or } 2)$
- Approach: Large complexes can't be treated with highest-accuracy methods
 - BAC-MP2 Reasonably accurate and applicable to large molecules
 - G3MP2 and CCSD(T): high-accuracy methods to calibrate BAC-MP2

Results:

- Amine complexes: 25 35 kcal/mol
- Ether complexes: 17 25 kcal/mol
- Alternatives tertiary amines of interest: Quinulidine, TMA, pyridine

Last Year's Results

• Demonstrated a low energy regeneration route for LiAIH₄: THF 60°C

 $LiH_{4}: \xrightarrow{THF} LiAIH_{4}-THF \xrightarrow{60^{\circ}C} LiAIH_{4} + THF^{\uparrow}$

• Demonstrated the direct formation of AIH_3 from AI^* and H_2 under mild conditions when amine used as stabilizer:

$C_6H_{12}N_2 + AI^* + 3/2H_2 \rightarrow C_6H_{12}N_2 - AIH_3$

This Year's Results

- Step 1: Four new AIH_3 adducts identified that form by direct hydrogenation (Experiments use AI + 2mol% Ti (AI^*) in solvent described previously)
- Step 2: Improvements in alane adduct separation via transamination
- Two complete regeneration pathways identified (all steps verified!)
- Preliminary results on H_2 evolution rates from AlH₃ in slurries

Accomplishments: Formation of Quinuclidine Alane **Reaction**: $C_7H_{13}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N-AIH_3$ 64 Quinuclidine alane ($C_7H_{13}N$ -AIH₃) Reaction conditions: 63 AI + 2 mol% TiQuinuclidine (solid) in THF 62 Pressure (bar) T = 298K61 **Product**: AIH₃ $C_7H_{13}N-AIH_3$ 60 H/AI = 1.8959 Yield = 63%20 40 60 80 100 120 0

Key results:

 Pressure decrease indicates hydrogenation of aluminum to form quinuclidine alane at low pressure and room temperature

Time (h)

• Solid product $(C_7H_{13}N-AIH_3)$ precipitates out of solution

NATIONAL LABORATO

Accomplishments: Formation of Quinuclidine Alane

Intensity

XRD of solid product shows new peaks indicating a new phase

 FTIR of solid reaction product shows AI-H stretching modes (1700 cm⁻¹) indicating formation of alane adduct

Accomplishments: Formation of Hexamine Alane

- Hydrogenation of aluminum to form hexamine alane occurs at low pressure and room temperature
- Reaction product ($C_6H_{12}N_4$ -AIH₃) appears to be insoluble in THF₁₀

Accomplishments:

Formation of Dimethylethylamine Alane

Reaction: $C_4H_{11}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N-AIH_3$

- Hydrogenation of aluminum to form DMA alane occurs at low pressure and room temperature
- Dimethylethylamine alane is a liquid at ambient P and T

Key results:

- Hydrogenation of aluminum to form TMA alane occurs at moderate pressure and room temperature
- Solid reaction product (C₃H₉N-AIH₃) precipitates out of solution

Time (h)

Accomplishments: Bis-trimethylamine alane structure

- Solid product recovered by vacuum drying at room temperature
- Solid TMA alane forms a "bis" structure with two TMA ligands on each AlH₃ and appears to be highly soluble in toluene and Et_2O

Accomplishments:

Separation - Recovering AIH₃ from Adduct

AIH₃ can be recovered from AIH₃-TEA (TEA=triethylamine)

$$AIH_3 - TEA \xrightarrow[3hrs]{70^{\circ}C} AIH_3 + TEA^{\uparrow}$$

AIH₃-TEA does not form by direct hydrogenation but may be exchanged with another amine in a **transamination** step:

$$AIH_3$$
-NR₃ + TEA $\xrightarrow{50^{\circ}C}_{3hrs}$ AIH₃-TEA + NR₃ \uparrow

(Direction and rate of any reversible reaction is a function of concentration)

Full separation procedure:

AIH₃-NR₃ + TEA $\xrightarrow{50^{\circ}C}_{3hrs}$ AIH₃-TEA + NR₃ $\uparrow \xrightarrow{70^{\circ}C}_{3hrs}$ AIH₃ + TEA DMEA alane separated using this procedure - XRD of recovered material shows AIH₃ + Al indicating further optimization is necessary

40

30

50

Two Theta (°)

60

70

80

Accomplishments: Multi-Step Pathways

Two low energy pathways identified for complete regeneration of AIH₃ (each step verified independently)

Overall reaction: $AI + 3/2H_2 \rightarrow AIH_3$

Why Use AIH₃ in Slurry Form?

Motivation: Off-board regeneration and repeated refueling will be challenging with a powder delivery system. Some of these challenge may be mitigated with a slurry system, but how will a slurry impact the capacity and H_2 rates?

Definition of "Slurry": a pump-able solid/liquid mixture for a 3 minute refill

Advantages to Slurry Delivery:

- 1. More quantitative transfer of hydrogen to the vehicle
- 2. Use of slurries speeds refueling of vehicle, removing spent AlH₃ from auto
- 3. May improve safety if slurry minimizes reactivity of AlH₃ to air

Challenges to Slurry Delivery:

- 1. Gravimetric Storage Density (less than 6% by wt.)
- 2. Engineering an onboard slurry fuel delivery system
- 3. Slurry pumped through external reactor will require full H_2 release in ~100s
- 4. Recovery from slurry for regeneration

Isothermal decomposition studies: (i) pure (dry) α -AlH₃ (ii) α -AlH₃ (20 wt%) in ethylene glycol dibutyl ether (Dibutoxyethane) (iii) α -AlH₃ (20 wt%) in C₁₀H₂₂O₂ with 0.03 mol % Ti as {Ti(OB)₄}

Accomplishments: AIH₃ Slurries

- Dry α -AlH₃ requires T > 150° C to achieve full H₂ release in ~100s (target)
- α -AIH₃ in ethylene glycol dibutyl ether (C₁₀H₂₂O₂) showed faster H₂ rates
- Ti catalyzed α -AlH₃ in C₁₀H₂₂O₂ meets target (full decomp in 100s at 100°C)

Summary of Accomplishments

Goal: Develop and demonstrate a storage system that meets DOE targets using aluminum hydride as hydrogen fuel source.

Major accomplishments (FY09):

- (1) Four new pathways identified to form AIH_3 adducts from H_2 and AI
 - Quinuclidine alane: $C_7H_{13}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N AIH_3$
 - Dimethylethylamine alane: $C_4H_{11}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N-AIH_3$
 - Hexamine alane:

Trimethylamine alane:

 $C_{6}H_{12}N_{4}+AI^{*}+3/2H_{2} \rightarrow C_{6}H_{12}N_{4}-AIH_{3}$ $C_{3}H_{9}N + AI^{*}+3/2H_{2} \rightarrow C_{3}H_{9}N-AIH_{3}$

(2) Improved adduct separation by introducing transamination step

- (3) Two low energy pathways identified for complete regeneration of AIH₃ using TMA and DMEA (each step verified independently)
- (4) Preliminary results on H_2 evolution rates from AIH₃ in slurries showed promising results for Ti catalyzed AIH₃ in $C_{10}H_{22}O_2$

Remainder of FY09

(i) Improve and optimize regeneration pathways:

$AI + H_2 + TMA \rightarrow AIH_3 - TMA \xrightarrow{TEA} AIH_3 - TEA \rightarrow AIH_3$ $AI + H_2 + DMEA \rightarrow AIH_3 - DMEA \xrightarrow{TEA} AIH_3 - TEA \rightarrow AIH_3$

(ii) Demonstrate complete regeneration cycle and determine efficiency(iii) Slurries: increase mass loading and investigate other liquid carriers

FY10 - completion

(i) Regenerate AlH₃ with *E* penalty ≤73 kJ/H₂ (30% of fuel energy)
(ii) Work with partners (ANL) to determine mass balance & energy cost
(iii) Continue investigation of alane slurries and liquid carriers
(iv) Work with partners on safety and engineering of alane system

Additional Slides

 Ti catalyzed AI (AI*) prepared by first making AIH₃ with TiCl₃ in ether and then decomposing the ether adduct

 $3LiAlH_4 + AlCl_3 + 0.08TiCl_3 \xrightarrow{Et_2O} 3.24LiCl + 4AlH_3 \cdot Et_2O + 0.08Ti$

$4AlH_3 \bullet Et_2O + 0.08Ti \quad \begin{array}{c} 100 \ \degree C \\ 2 \ \overrightarrow{hrs} \end{array} \quad 4Al + 0.08Ti \\ \end{array}$

- Typical catalyst concentration was 2 mol % Ti
 - Recent results suggest reactions will work with much lower catalyst concentration
- Reactions performed in solvent medium: THF, Et₂O
 - Solvent acts as electron donor and helps stabilize AIH_x

Theory Guides Choice of Adduct

1:1 Complexes	AI-N BDE* (kJ/mole)	1:2 Complexes	AI-N BDE* (kJ/mole)
AIH ₃ NH ₃	142.7		
AIH ₃ NMe ₃	147.6 ,DFT: (108.1)	AIH ₃ 2NMe ₃	217.9 (145.9)
AIH ₃ NEt ₃	118.6 (89.1)	AIH ₃ 2NEt ₃	158.7 (90.9)
AIH ₃ TEDA	156.3 (115.4)	AIH ₃ 2TEDA	233.8 (155.4)
AlH ₃ Quinuclidine	159.9 (118.4)	AIH ₃ 2Quinuclidine	236.7 (156.0)
AlH ₃ pyridine	135.2 (109.2)	AIH ₃ 2pyridine	193.3 (142.1)
AlH ₃ pyrazine	125.3	AIH ₃ 2pyrazine	

BDE = Energy to dissociate to AlH₃ + all ligands
 Blue: BAC-MP2; Red: DFT/B3LYP (McGrady et al., UNB)

Sandia National Laboratories

Strongest Al-N Bond: AlH_3 --quinuclidine; weakest Al-N Bond: AlH_3 --N(C_2H_5)₃ 1:2 complexes (e.g. (AlH_3)--2pyrazine): significantly less stable 1:2 complexes: Kinetics governed by Al-N in 1:1 (Al-N bond in 1:2 is weaker) BAC absolute values differ from DFT predictions, but trends are similar