

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage

Ping Liu and John Vajo HRL Laboratories, LLC Malibu, CA

May 19, 2009

Project ID # ST_09_Liu

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date: March 2005
- Project end date: Feb 2010
- Percent complete: 80%

Budget

Total Project Funding:

Phase I and II: \$2.75M

- DOE Share: \$2.0M
- Contractor Share: \$0.75M

Funding received in FY08: \$350K (DOE), \$150K (cost share)

Funding for FY09 (planned): \$400K (DOE), \$150K (cost share)

Technical Barriers

- A. System weight and volume
- C. Efficiency
- E. Charging and discharge rates

Partners

MHCoE collaborations:

- U. Pitt, Georgia Tech: modeling of new systems and kinetic barriers
- Stanford: thin film systems
- Hawaii: hydride synthesis
- Caltech, JPL, NIST: scaffolds characterization

- DOE collaborations:

- LLNL, PNNL: carbon scaffold synthesis
- UConn: destablized systems

Relevance-

Overall

To develop and demonstrate a safe and cost-effective lightmetal hydride material system that meets or exceeds the DOE goals for reversible on-board hydrogen storage

2008/2009

1. Characterize LiBH₄/MgX, X = Ni destabilized hydride system

- New destablized hydride system with reversible theoretical capacity of 8.3% (6.5% observed) and lower temperature than X = H₂ for hydrogen exchange
- Addresses Barriers A, C, and E.
- 2. Incorporate complete $LiBH_4/MgH_2$ destabilized hydride system into carbon aerogel
 - Increase hydrogen exchange rate through nano-engineering
 - Addresses Barriers C and E

3. Investigate new scaffold structures

- Increase hydrogen exchange rate through nano-engineering
- Addresses Barriers C and E

Approach-

Technical Approach

Nano-engineering

(addresses kinetics)

Decrease diffusion distances, nanoporous scaffolding

- Shorter diffusion distances: faster hydrogen exchange
- More efficient catalysis pathways
- Nano-scaffolds as hosts for nanostructured hydrides:
 - → structure- directing agents, mitigate particle agglomeration

Enhanced reaction rate and improved cycling

From Petricevic, et al., Carbon 39, 857 (2001)

Approach-

LABORATORIES

Status as of March 2008:

- Observed reversible capacity of 6.5% for the LiBH₄/Mg₂NiH₄ system; ternary boride formation identified
- Incorporated and characterized LiBH₄ in carbon aerogel
- Incorporated Mg into Ni loaded carbon aerogel through melting

Month/Year	Milestone or Go/No-Go Decision		
Sept-08	Milestone: Incorporate the LiBH ₄ /MgH ₂ destabilized system into nanoscale scaffold. Successfully incorporated LiBH ₄ /MgH ₂ destabilized system. Observed reduced reaction temperature with hydrogen release.		
Sept-09	Milestone: Complete investigation of ternary boride system. Complete work on Mg-Ni-B systems, search for other ternary boride systems with higher capacities and lower reaction temperatures.		

Technical Accomplishments –

1. LiBH₄/Mg₂NiH₄ Destabilized System

Time (hr)

- IR spectra shows complete consumption of LiBH₄ by 345°C
- Possible Rxn: $4LiBH_4 + 5Mg_2NiH_4 \rightarrow 2MgNi_{2.5}B_2 + 4LiH + 8MgH_2 + 2.5 wt\% H_2$
- Low temperature step does not occur for either Mg₂NiH₄ or LiBH₄ individually

First example of kinetically destabilized system

Preliminary data from variable pressure hydrogenation/dehydrogenation cycles

- Preliminary data gives $P_{eq} \sim 30x$ higher than $LiBH_4/MgH_2$ system
- Full isotherms need to be done (planned)

Alloys synthesized from milled mixtures of MgB₂ + xNi, sintered at 800 °C, 24 hr

Intensity

LABORATORIES

Hydrogenation of milled MgNi_{2.5}B₂ + 2LiH + 4MgH₂ at 350 °C, 100 bar H₂, 4 hr

- Ternary boride (x = 2.5) can be hydrogenated partially (~30%)
- Only boride other than MgB₂ that readily reacts with hydrogen

Other reactive ternary (or higher order) borides may exist to offer higher capacities and lower reaction temperatures

Technical Accomplishments -

 MgH_2 incorporated 1st at U. Hawaii from Bu_2Mg , then $LiBH_4$ at HRL Overall composition is 2 $LiBH_4$ + MgH_2 in aerogel at a loading of 25 wt%

Time (hr)

Reaction temperature is lower than for bulk sample with catalyst

- Individual steps (if present) are not well resolved
- However, cycling is poor (sequential filling may lead to poor mixing in pores)

Pure components@aerogel scaled (0.25MgH₂ + 0.75LiBH₄) to combined system

Behavior is largely accounted for by individual components

• LiBH₄ and MgH₂ do not appear to be mixed well within the pores (we are considering simultaneous incorporation) HRL Second Attempt : LiBH₄ Incorporated 1st

13 nm aerogel; LiBH₄ incorporated at HRL, then MgH₂ incorporated at U. Hawaii

Time (hr)

• 1st cycle capacity is low (may be due to sample handling, shipping to/from Hawaii)

- There is a large loss on the 2nd cycle (not understood)
- Only our 2nd try, we are working to perform the complete filling procedure at HRL

Technical Accomplishments -

3. New Scaffold Structures

Mesoporous carbon from porous polymer

Chem Mater., Lu et al., 20 5314 (2008)

Long, straight but not interconnected pores

Mesoporous carbon by reverse casting from silica (T. Baumann, LLNL)

Carbon aerogel

Long, straight and interconnected pores

Isotropic, 3-D, random pores

• Rate for reverse cast meso-C from PNNL ≈ rate for 5 nm aerogel

• Rate for HRL meso-C degrades quickly (pores may be too long)

1.Gravimetric and Volumetric Penalties

- Most aerogels:
 - ~ 1 cm³/g for 5 to 10 nm pore sizes
 - up to > 4 cm³/g for pore sizes > 20 nm
- If kinetic improvements are sufficient, for penalties of < 25 %, we will need:
 - ~ 5 to 10 nm pore sizes with > 3 cm³/g pore volume
- For 10 nm slit pores with two single graphene layers, the pore volume would be 6.8 cm³/g

In 2008 LLNL achieved 4.6 cm³/g with 15 nm pores, showing the possibility of meeting the goals

2. Other issues

- Chemical stability, i.e., CH₄ formation from carbon scaffolds
- Mechanical stability over multiple cycles? (Note: volume changes during cycling are contained within aerogel particles)

Continued advancement in porous carbon materials makes them both important research tools and potential practical solutions

- Center partners
 - David Sholl (Georgia Tech) and Karl Johnson (U. Pitt): HRL synthesized/tested LiBC based on their calculations; no hydrogenation observed at 100 bar
 - Bruce Clemens (Stanford): determined diffusion lengths of hydrogen in hydride systems (Mg₂Si and MgH₂) using thin films
 - Craig Jensen (Hawaii): developed method for MgH₂ incorporation into scaffolds using organic precursors
 - S-J Hwang (JPL): NMR studies of ternary hydrides and scaffolds
 - Channing Ahn (Caltech): TEM studies of scaffolds
 - Terry Udovic (NIST): Neutron based characterization of scaffolds
 - Ewa Ronneboro (formerly Sandia) and Xia Tang (UTRC): discussions on scaffolds; HRL supplied carbon aerogels
 - Zak Fang (Utah): HRL measured equilibrium pressure of Ti doped MgH₂
- DOE partners
 - Ted Baumann (LLNL): provided porous carbon materials
 - Tom Autrey (PNNL): provided mesoporous carbon
 - Leon Shaw (UConn): collaborated on optimizing kinetics using milling, HRL validated UConn results

New Destabilized Systems

- Complete investigation of the MgNi_xB₂ system (Milestone: Sept 09)
 - Fully establish reaction(s)
 - Measure isotherms
- Search for other ternary systems with high capacity and low reaction temperatures

Nanoporous Scaffolds

- Optimize LiBH₄/MgH₂ in scaffolds
 - Understand and address poor cycling
 - Incorporate LiBH₄ and MgH₂ simultaneously
 - Incorporate catalysts
- Carbon scaffolds
 - Continue to study influence of pore size and distribution
 - Perform further characterization of mesoporous carbon
 - Elucidate mechanism of kinetic enhancement

Summary

New Destabilized Systems

- Investigated LiBH₄/Mg₂NiH₄ system
 - Observed first kinetically destablized system
 - Confirmed the formation of ternary borides
 - Synthesized ternary borides and observed their hydrogenation

Nanoporous Scaffolds

- Incorporated LiBH₄/MgH₂ destabilized system into scaffold
 - Observed lower dehydrogenation temperature but with poor cycling
 - Tentatively assigned poor cycling to poor mixing of components
- Investigated effect of scaffold on hydrogen exchange reaction rate
 - Developed synthetic capability of mesoporous carbon at HRL
 - Observed effect of pore architecture on reaction rate

Supplemental Slides

Program Direction – By System –

Destabilized System	Benchmark	2008 Status	2008/09 Progress	Future
LiBH ₄ / MgH ₂ @C aerogel 11.4 wt.%, 0.095 kg/L w/o aerogel, est. T _{1 bar} =170°C	Could meet 2010 system weight and volume capacity goals (assuming 25% aerogel and additional 25% system penalties)	 Reduced capacity penalty to 40% Measured 10x equilibrium pressure of bulk Incorporated Mg into aerogel Measured > 150x reaction rate 	 Incorporated complete destabilized system into aerogel Reaction temperature lowered but with degradation Mesoporous carbon synthesized and shows promise for improved kinetics 	 Incorporate LiBH₄ and MgH₂ into aerogel simultaneously Further optimize pore architecture and surface chemistry for maximum kinetic benefit
LiBH ₄ / Mg ₂ NiH ₄ 8.3 wt%, est. T _{1 bar} =150°C	Could meet 2010 system capacity goal (but only small system penalty)	 Reversible capacity of ~6.5% at 350°C Slight degradation observed 	 Measured T_{1bar} of 65°C for low temperature step Hydrogenation of ternary boride confirmed 	 Candidate for incorporation into scaffold Candidate for catalyst screening
LiBH ₄ / MgF ₂ 7.6 wt%, est. T _{1 bar} =150°C	Could meet 2010 system capacity goal (but only small system penalty)			Candidate for incorporation into scaffold
Other LiBH₄ / MgX 4-10 wt.%, est. T _{1 bar} : -10 to 430°C	Could meet 2007 goal (including moderate system penalty)	Sorption meas.: X=Cl, Cu No destabilization		 Test new destab. agents, X=O, OH, Ni Use nano-engineering to improve kinetics

HRL LABORATORIES Peq from Variable Pressure Hydrogenation

At 310 °C, the P_{eq} for the low temperature step is between 75 and 100 bar
At 280 °C, P_{eq} is between 50 and 75 bar (*data not shown*)

- LiBH₄ is largely reacted by 345 °C
- Supports Rxn: $4LiBH_4 + 5Mg_2NiH_4 = 2MgNi_{2.5}B_2 + 4LiH + 8MgH_2 + 2.5 wt\% H_2$

Mg₂NiH₄ kinetically destabilizes LiBH₄

Refer to Slide 13

Sample	Mode pore size (nm)	Total pore volume (cm ³ /g)	Micropore volume (cm³/g)
HRL 5 nm aerogel	6	0.50	0.13
HRL mesoporous carbon	6	0.57	0.13
LLNL reverse cast mesoporous carbon	4	1.35	0.03

First sample to show significant dehydrogenation at melting point

• Weight loss slightly lower than expected indicating some decomposition during incorporation (H₂ overpressure may be needed)