Catalyzed Nano-Framework Stabilized High Density Reversible Hydrogen Storage Systems

X. Tang, D. Mosher, S. Opalka, T. Vanderspurt, B. Laube, R. Brown United Technologies Research Center

E. Rönnebro*, T. Boyle, L. Ottley, M. Ong Sandia National Laboratories

*(Currently at PNNL)

DOE Hydrogen Program Annual Merit Review Arlington, VA May 19, 2009 F.-J. Wu J. Strickler Albemarle Corporation

Project ID: ST 10 Tang

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start : 7/1/07
- Finish: 7/1/10
- 65% Complete

Budget

- \$1.26M Total Program
- DOE: \$1.01M
 - SNL: \$360k
 - Albemarle: \$90k
 - Cost share: 20%
 (31% UTRC \$)
- **FY07:** \$80k
- **FY08: \$470k**
- FY09: \$460k (planned)

Barriers Addressed

- A. System Weight and Volume
- E. Charging/Discharging Rates
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

www.eere.energy.gov/hydrogenandfuelcells/mypp

Partner Participation

- United Technologies Research Center (Project Lead)
- Sandia National Laboratories
- Albemarle Corporation
- Aspen Aerogels

Relevance

Challenges & Objectives

Challenges:

- A wide range of high-capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to:
 - Reversibility
 - High desorption temperatures
 - Instability at ambient temperature
- While different material compositions are continuing to be developed in the world-wide research community, the scope of novel, high-potential storage materials has its limits.

Objectives:

The use of nano-frameworks offers a distinct material design approach to improve sorption reaction behavior in a number of ways. The objectives of the current effort are to:

- Examine a variety of framework chemistries and hydride / framework combinations to make a relatively broad assessment of the method's potential.
- These chemistries include doped, functionalized, and catalyzed frameworks.

Relevance

Challenges & Objectives

Objectives (cont.):

- Tune hydride / framework interactions to:
 - Decrease desorption temperature for highly stable compounds.
 - Stabilize high capacity compounds, resulting in ligand elimination.
 - Influence desorption product formation to improve reversibility.
- Develop and apply atomic modeling techniques in evaluating and designing the local surface interactions.
- Activate H₂ dissociation on highly dispersed catalytic sites.
- Maintain nano-scale phase domains during cycling.
- As part of the MHCoE, focus on improving the performance of material candidates within the center, which have been borohydrides to date.

4

Plan / Approach

Combine *computational* and *experimental* methods to design & synthesize hydride / nano-framework composites.

Becomption
The composites with $Ca(BH_4)_2$, a reversible borohydride with 9.6 eoretical capacity, which is overly stable.
ne NaTi(BH ₄) ₄ as a high-capacity candidate which is unstable quires ligands to stabilize.
te hydride-framework interactions: associative stabilization, position/side-products, dehydrogenation, to guide experiments.
e heterogeneous catalysis of hydride reversibility by modeling ociation, H migration, and rehydrogenation.
te a range of framework chemistries, with a focus on oxides and onalized) carbons, for their influence on the hydride candidates.
ze the nano-frameworks to promote H_2 dissociation.
y both melt and solution based incorporation methods.
on solution-based incorporation methods for unstable hydrides.
hydride / framework combination candidates for chemical tibility, to ensure framework integrity and cyclability. The hydride-incorporated frameworks.

Milestones

Date	Milestone or Go / No Go Decision
2008 Q1	Select advanced nano-framework structure
2008 Q1	Demonstrate synthesis of desired nano-framework structure
2008 Q1	Synthesize top Sandia candidate hydride material
2008 Q2	Synthesize top UTRC / Albemarle candidate hydride material
2008 Q4	Evaluate relative performance of framework / catalysts
2008 Q4	Synthesize optimal catalyzed nano-framework structure
2009 Q1	Demonstrate loading of UTRC / Albemarle hydride into framework
2009 Q2	Demonstrate loading of Sandia hydride into framework
2009 Q3	Go / No Go on whether to proceed with original plan or redirect based on: > 50% hydride deposition into the catalyzed framework materials Reasonable absorption/desorption behavior for at least one cycle Performance relative to the state-of-the-art material shows promise

To date greater emphasis has been placed on evaluating uncatalyzed systems.

Approach

Atomic Modeling

Role

United Technologies

Conduct atomic modeling to investigate and prescreen:

Hydride thermodynamics

Interfacial physi-/chemisorption reactions influence on hydride stability and dehydrogenation

Nano-framework stability and modification:

- a) doping to tune reactivity
- b) loading with H₂ activation catalysts for reversibility
- c) surface functionalization

Density Functional Theory Ground State Minimization

Direct Method Lattice Dynamics Thermodynamic Property Prediction

Exploratory mechanistic simulations to guide material selection & design.

Approach

Experimental

Solid State Processing

 Rapid, low cost screening for undesired reaction products between hydrides and framework and impact on reversibility

Nano-Framework

 Synthesize and characterize uncatalyzed and catalyzed nanoframeworks

aspen aerogels

Solution Based Incorporation

- Solvated hydride
- Solvents selected for ease of removal

High-Pressure station

- Solid state reactions
- Wide range of P and T (20,000 psi, 600°C)
- Autoclave with six samples capability

NaTi(BH₄)₄*DME Synthesis

- Synthesize NaTi(BH₄)₄*DME by solution based processing
- Incorporation in aerogel

Summary

Last Year:

 Down selected ZrO₂ as most stable oxide nano-framework material using LiBH₄ as baseline hydride.

This Year:

Atomic Modeling:

- Evaluated interaction of Ca(BH₄)₂ with ZrO₂ framework and its impact on Ca(BH₄)₂ dehydrogenation.
- Investigated the effect of Pt catalyzed ZrO₂ on hydrogen dissociation and Ca(BH₄)₂ rehydrogenation.

Framework and Hydride (Experimental):

- Conducted evaluation of the reactivity of Ca(BH₄)₂ with Y₂O₃ stabilized ZrO₂ (YSZ) and functionalized carbon aerogels.
- Identified the impact of uncatalyzed framework materials on Ca(BH₄)₂ rehydrogenation.
- Incorporated Ca(BH₄)₂ and NaTi(BH₄)₄*DME (dimethoxy ether) in aerogels.

When interfaced with ZrO_2 , $Ca(BH_4)_2$ was predicted to have:

- * Increased dehydrogenation enthalpy, with an increase of < +14 kJ/m H_2 .
- * The same order of favorability for competing dehydrogenation reactions.

Technical Achievement - Atomic Modeling of Pt Catalyzed Rehydrogenation

Modeling investigations demonstrated utility of H₂ activation catalysts to: * Facilitate formation, adsorption, and transfer of atomic H,

* Enhance binding and rehydrogenation of dehydrogenated phases.

Technical Achievement

$Ca(BH_4)_2$ – Framework Interaction

(* PI: Polyimide derived C aerogel, Dehydriding: 350°C/1 bar, Rehydriding: 350°C/190 bar)

- $Ca(BH_4)_2$ (low temperature phase) formed in recharged $Ca(BH_4)_2$ and $Ca(BH_4)_2$ -C systems, but not in recharged $Ca(BH_4)_2$ -YSZ.
- Small amount of products from $Ca(BH_4)_2$ reaction with C framework.

Technical Achievement

Whited Technologies Research Center

H₂ Desorption of Ca(BH₄)₂ Mixed with C Aerogels

High Energy SPEX Milled

 $Ca(BH_4)_2$: C = 1 : 1 (mole ratio)

- Enhanced desorption was observed in $Ca(BH_4)_2$ C systems.
- C aerogel from PF has faster Ca(BH₄)₂ desorption after rehydriding

Technical Achievement Sandia National $Ca(BH_4)_2$ Incorporation (Solution Method) aboratories

$Ca(BH_4)_2$ Precursors Investigated:

 $Ca(BH_4)_2$ *2THF, $Ca(BH_4)_2(py)_4$ •py and $Ca(BH_4)_2$ *2DME

Solvent: THF and Pyridine

Aerogels: Carbon (PI) (583 m²/g, 25 nm pore size, 3.67 cc/g pore volume) Y-stabilized ZrO_2 (138 m²/g, 12 nm pore size, 0.72 cc/g pore volume)

Incorporation methods for C aerogel: H₂ Desorption Dissolve Ca(BH₄)₂*2THF in THF 350 Temperature Submerge for 48 h 8% H2 Wt% based on Ca(BH4)2 $Ca(BH_4)_2 + C$ (SPEX Milled) Remove aerogel from solvent Remove solvent from aerogel at 250 6% Ca(BH₄)₂ (SPEX Milled) 160°C/vacuum for 24h 200 4% • Incorporation of $Ca(BH_4)_2$ in C aerogel lowered H₂ desorption $Ca(BH_4)_2$ 2% incorporated in C(PI) temperature. 50 (50 wt% loading) Desorption capacity needs to 0% 0 be optimized. 0.5 1.5 2.5 3 2 Time (h)

300

150

100

Approach similar to John Vajo et al., HRL

- Melt incorporation of Ca(BH₄)₂ into four different nano-frameworks at elevated T and P:
 - C-aerogel (from HRL)
 - Polyimide-derived C-aerogel
 - Phenolic-derived C-aerogel
 - Y-stabilized ZrO₂
- From a visual inspection, it appears that Ca(BH₄)₂ wets the surface but also may have been infused into the polyimide-derived C-aerogel

Melt incorporation increases the proportion of hydrogen released at elevated temperatures.

H₂ Evolution from Ca(BH₄)₂

Simultaneous Thermo-gravimetric Modulated-Beam Mass Spectrometer (STMBMS)

- Ca(BH₄)₂ melt incorporated in Caerogel (from HRL)
- - Uncatalyzed Ca(BH₄)₂
- Catalyzed $Ca(BH_4)_2$ by milling

Technical Achievement

NaTi(BH₄)₄*DME Incorporation (Solution Method)

Hydride Precursor: NaTi(BH₄)₄•3DME and NaTi(BH₄)₄•DME

Solvent: DME (Dimethoxyethane)

Aerogel:

- SiO₂ (312m²/g, 39nm, 1.58cc/g)
- YSZ

Incorporation by solvent route (incipient wetness):

- 40 wt% NaTi(BH₄)₄•3DME in SiO₂
- 50 wt% NaTi(BH₄)₄•3DME in SiO₂
- 25.8 wt% NaTi(BH₄)₄•DME in SiO₂
- 33.5 wt% NaTi(BH₄)₄•DME in SiO₂

Stability:

- Baseline precursor material: < 2 days</p>
- Incorporated materials > 10 days

DRIFTS* of NaTi(BH₄)₄ Complexes Incorporated in Silica

* Diffuse Reflectance Infrared Fourier Transform Spectra

- High loading of borohydrides in a SiO₂ aerogel was achieved.
- SiO₂ framework improved stability of unstable hydride, but still not sufficient.

Collaborations

HRL: John Vajo

Discussions on related efforts & exchange of aerogels.

- Aspen Aerogels: Wendell Rhine, Sara Rosenberg Synthesis and characterization of aerogels.
- LLNL: Ted Baumann Discussions on processing of aerogels.
- Ohio State University: J. C. Zhao Initiated synthesis of borohydrides.
- Oak Ridge National Laboratory: Gilbert Brown Initiated synthesis of borohydrides.
- U Hawaii: Craig Jensen Incorporation of Mg(BH₄)_{2.}
- University of Missouri St. Louis: Eric Majzoub Atomic modeling of mixed metal borohydrides.
- Sandia National Laboratory, Livermore: Tim Boyle, Vitalie Stavila, Joe Cordaro, Ewa Rönnebro (now with PNNL) Synthesis of mixed metal borohydrides.

Atomic Modeling

- Design doped-ZrO₂ to balance interfacial interactions of hydrided and dehydrided storage material candidates.
- Survey influence of candidate ligands on hydride / nano-framework interactions.

Framework and Hydride

- Evaluate the impact of catalyzed nano-frameworks.
- Examine stabilization effect of YSZ and C aerogels on the stability of NaTi(BH₄)₄•DME and removal of ligand.
- Consideration of alternate hydride candidates.
- Characterize hydride incorporated in nano-framework (uncatalyzed and catalyzed) with BET, SEM, etc.
- Optimize hydrogen storage performance.

Go / No-Go decision affecting project execution & emphasis in final year.

Summary

To advance the understanding of how nano-frameworks can enhance the performance of storage candidates, a range of material / framework combinations and effects has been investigated including:

- Down-selected functionalized C and ZrO₂ as most suitable framework materials for future catalyzation investigations.
- Simulated the atomic mechanism for heterogeneously catalyzed H₂ dissociation and H transfer to kinetically facilitate rehydrogenation of Ca(BH₄)₂ dehydrogenation products.
- Obtained a decrease in H₂ desorption temperature of the stable borohydride Ca(BH₄)₂ incorporated in C aerogels by solution based incorporation.
- Demonstrated high loading of NaTi(BH₄)₄*ligand in SiO₂ aerogel and improved hydride stability with the aerogel.

Additional Slides

Research Center

Technical Achievement Framework Characterization

In-house BET Analysis

- Determine pore size distribution and pore volume for nano-framework
- Provide guidance in optimizing calcination conditions
- Evaluate hydride incorporation

