

Neutron Characterization and Calphad in support of the Metal Hydride Center of Excellence

Terrence J. Udovic Ursula R. Kattner

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

May 19, 2009

ST_11_Udovic

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start FY05
- Project end FY10
- 80% complete

Budget

	<u>FY</u>	<u>HSCoE</u>	<u>MHCoE</u>
•	FY08	\$225K	\$287K
•	FY09 (planned)	\$234K	\$298K

NIST continues to provide access to neutron facilities and FTEs for the HSCoE and MHCoE.

NIST Associates

Jae-Hyuk HerMuhammed YousufuddinWei ZhouHui WuNina VerdalJohn J. Rush

Barriers addressed

- A. System Weight and Volume
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- Caltech, GM, HRL, JPL, Lawrence-Livermore, Maryland, Michigan, Missouri-Columbia, Ohio State, Penn, Sandia, Stanford – Neutron-based Characterization
- Georgia Tech, Illinois, Missouri-St. Louis, Pittsburgh, Sandia
 - Calphad Calculations
 - Sandia – Project Lead

- **Overall:** Support the development of hydrogen-storage materials by providing timely, comprehensive characterization of Center-developed materials and storage systems using state-of-the-art neutron methods and Calphad. Use this information to <u>speed the development and</u> optimization of storage materials that can meet the 2010 DOE system goals of 6 wt% and 45 g/L capacities.
- Characterize structures, compositions, hydrogen dynamics, and absorption-site interaction potentials for candidate storage materials.
- Provide Calphad calculations of phase relationships of potentially promising hydrides.

Detailed neutron studies in support of the Center's go/no-go analysis

Thermodynamic evaluations (Calphad)

Month/Year	Milestone		Month/Year	Milestone
Apr-08 (Complete)	Evaluate structural and bonding properties of new materials selected through discussions with the leadership of the Center and coordinating council and establish a high-pressure hydrogenation system to complement SNL work. (Complete for Li(BH ₄) _x (NH ₂) _{1-x} , NaMgH ₃ , Li ₂ B ₁₂ H ₁₂ , Ca(BH ₄) ₂ , and LiKBH ₄ .)		Apr-08 (Complete)	Refine descriptions of constituent binary Ca-systems.
			Sep-08 (Complete)	Develop description of the Ca-B-H system including the $Ca(BH_4)_2$ compound.
Sep-08 (Complete)	A thorough analysis as needed of the materials that have favorably passed the Phase 1 go/no-go decisions and show the most promise of achieving the DOE 2010 targets (e.g., other nano-confined borohydrides).		Apr-09	Develop descriptions for borane gas species and the Mg-B-H system including the Mg(BH ₄) ₂ compound.
	Evaluate structural and bonding			
Sep-09	through discussions with the leadership of the Center and coordinating council (e.g., $Na_2B_{12}H_{12}$, $CaB_{12}H_{12}$, and $CaAIH_4BH_4$)		Sep-09	Develop descriptions for Ca and Mg hydro- <i>closo-</i> borates. 4

Approach

Neutron methods

- determine elemental compositions of materials (prompt-γ activation analysis and neutron reflectometry of H stoichiometries and profiles)
- determine location of H and crystal structures of materials (neutron diffraction superior to XRD for "seeing" light H and D)
- determine bonding of absorbed H (unlike IR and Raman, neutron vibrational spectroscopy "sees" all H vibrations for straightforward comparison with first-principles calculations)
- elucidate H diffusion mechanisms (faster dynamics timescale of neutron quasielastic scattering complements NMR; transport mechanisms gleaned from momentum transfer dependence)

Calphad methods

- develop a thermodynamic database from the available literature and first-principles calculations
- incorporate database into an overall temperature-pressurecomposition framework for multicomponent metal-hydrogen systems

Characterization of M_xB₁₂H₁₂ Compounds NIST

Technical Accomplishment Collaboration with Sandia, JPL, Caltech, Maryland, and Missouri-Columbia

Motivation: to characterize hydrogen cycling intermediates in light-metal borohydrides, where structural and thermodynamic data are lacking.

The Li⁺ cation lies in a nearly trigonal planar site formed by three $B_{12}H_{12}^{2-}$ anions, each of which resides in the octahedral cage defined by six Li⁺ cations.

Each $[B_{12}H_{12}]^{2-}$ anion orients two H atoms to each of the Li⁺ cations, resulting in a strongly distorted octahedral coordination of the Li⁺ cation with six H atoms.

The NV spectrum and DFT calculations agree with the structural model from XRD.

J.-H. Her et al., Inorg. Chem. 47, 9757 (2008)

* The structure of $Li_2B_{12}H_{12}$ was solved by a combination of XRD, neutron vibrational spectroscopy (NVS), and DFT calculations.

Characterization of M_xB₁₂H₁₂ Compounds NIST

CENTER OF

* Two other relevant M_xB₁₂H₁₂ structures were solved by XRD, NVS, and DFT.
7
* Spectroscopy may be useful to test predicted structures, even for "amorphous" samples.

Technical Accomplishment Collaboration with Sandia, JPL, Caltech, Maryland

Motivation: to help characterize new MHCoE compounds such as novel borohydrides

Possible synthesis of $Ca(AIH_4)(BH_4)$ via ball-milling of LiAIH₄ + LiBH₄ + CaCl₂

NVS (left) and NMR of the "amorphous" compound + LiCl indicate some spectroscopic similarities with $Ca(A|H_4)_2$ $Ca(BH_4)_2$, and LiBH₄, but clear differences exist.

Theory predicts a possible stable structure. DFT phonon calculations are in progress.

* NVS data may reflect a new compound.

Spectroscopic analysis of LiK(BH₄)₂ synthesized via ball-milling of LiBH₄ + KBH₄

NV spectrum of $LiK(BH_4)_2$ synthesized at SNL agrees well with DFT phonon calculations of the optimized $LiK(BH_4)_2$ structure.

* NVS data and DFT corroborate 8 LiK(BH₄)₂ formation.

Technical Accomplishment

Collaboration with HRL and Lawrence Livermore

Motivation: to investigate the properties of nanoscaffold materials

Properties of Nanoconfined Li₃BN₂H₈

Technical Accomplishment

HYDRIDE

CENTER OF

Collaboration with HRL, GM, Maryland, and Penn

Motivation: to investigate the use of nanoconfinement to enhance the kinetics and reversibility of $Li_3BN_2H_8$ [a mixture of (2/3) $Li_4BN_3H_{10}$ + (1/3) $LiBH_4$, 11 wt% H]

H. Wu et al., Nanotechnology (in press 2009)

10

* Nanoconfinement of Li₃BN₂H₈ renders it partially reversible.

Technical Accomplishment Collaboration with HRL, Lawrence Livermore, Maryland, and Michigan

Motivation: to investigate borohydride dynamics perturbations in carbon aerogels

We studied the effect of LiBH₄ fill fraction in a 13 nm carbon aerogel on the reorientational dynamics of BH_{4}^{-} anions.

two-fold jumps

three-fold jumps

For 4% filling, the onset of rapid BH_4^- anion reorientations shifts to much lower temperature.

Does this behavior reflect preferential filling of smaller pores and/or surface film formation?

*Partial filling enhances the LiBH₄ fraction exhibiting non-bulk-like behavior.

Neutron Imaging of Hydrogen-Storage Beds NIST

Technical Accomplishment Collaboration with JPL and Maryland

Motivation: We need accurate *in-situ* diagnostics of practical hydrogen-storage beds

Technical Accomplishment Collaboration with Georgia Tech, Illinois, Missouri-St. Louis, Pittsburgh, Sandia

Motivation: to develop thermodynamic database (using Calphad) for H-Li-Mg-Ca-B-Si, where experimental data are generally lacking

We continued thermodynamic descriptions of the constituent subsystems

- Refined descriptions of constituent binary Ca systems
- Modified Neumann-Kopp rule for the prediction of heat capacities of complex metal-hydrides; developed description for $Ca(BH_4)_2$
- Expanded database to include higher borane species in the gas-phase description

HSCoE Effort: Cu-paddlewheel MOFs NIST

Technical Accomplishment

Collaboration with U. Sydney, Maryland, and Penn

Motivation: to understand the binding of H_2 in paddlewheel-motif MOFs: HKUST-1

* Interactions determined by Coulomb forces through weak electron overlap. ₁₄ * Hydrogen rotations are quasi-2D.

Collaborations

Partners (Type of Institution): What we provide to them

- **CalTech** (Univ./MHCoE): neutron and x-ray measurements and DFT calculations of various alanates, borohydrides, and related materials
- Georgia Tech (Univ./MHCoE): Calphad calculations of multicomponent light-element systems

GM (Industry): cycling and kinetics studies and characterization of nanoconfined $Li_3BN_2H_8$

HRL (Industry/MHCoE): neutron measurements of aerogels and nanoconfined LiBH₄; cycling and kinetics studies and characterization of nanoconfined Li₃BN₂H₈

Illinois (Univ./MHCoE): Calphad calculations of multicomponent light-element systems

JPL (Fed./MHCoE): neutron and x-ray measurements and DFT calculations of various alanates, borohydrides, and related materials

Lawrence-Livermore (Fed./MHCoE): neutron measurements of aerogels and nanoconfined LiBH₄

Maryland (Univ.): neutron and x-ray measurements of alanates, borohydrides, and related materials; neutron imaging of hydrogen-storage beds

Michigan (Univ.): neutron measurements of BH_4^- dynamics in neat and nanoconfined metal borohydrides **Missouri-Columbia** (Univ.): neutron and x-ray measurements of $Li_2B_{12}H_{12}$ compounds

Missouri-St. Louis (Univ./MHCoE): Calphad calculations of multicomponent light-element systems; neutron measurements of various alanates, borohydrides, and related materials

Ohio State (Univ./MHCoE): neutron and x-ray measurements of MgB₁₂H₁₂ compounds

Penn (Univ.): neutron measurements of boranes, perovskite hydrides, and other storage-related materials

Pittsburgh (Univ./MHCoE): Calphad calculations of multicomponent light-element systems

Sandia (Fed./MHCoE): neutron measurements and DFT calculations of various alanates, borohydrides, and related materials; Calphad calculations of multicomponent light-element systems

Stanford (Univ./MHCoE): neutron reflectivity measurements of H profiles in H-cycled Mg thin films 15

Remainder of FY 2009 and FY2010:

- Continue structural and spectroscopic characterizations of dodecahydro-closo-٠ dodecaborates (M_xB₁₂H₁₂) (with Sandia, Caltech, Maryland, Missouri-St. Louis, Ohio State)
- Continue rotational dynamics investigations of nanoscaffolded borohydrides. (with ٠ HRL, Lawrence Livermore, Michigan, Caltech)
- Continue Mg thin-film characterizations using neutron reflectometry. (with Stanford) ٠
- Perform neutron scattering characterizations of new materials in conjunction with the ٠ needs of the other partners, including borohydrides and nanoscaffolded materials of interest.
- Continue feasibility studies using neutron imaging to probe H distribution and transport ٠ in storage beds for candidate materials. (with JPL, Maryland)
- Develop Calphad description of the Ca-B-H and Mg-B-H systems including the ٠ $Ca(BH_{4})_{2}$ and Mg(BH_{4})_{2} compounds. (with MHCoE Theory Group)
- Continue to expand Calphad database (evaluate literature for data, identify data needs • and systems with MHCoE partners for future database development).

Summary

Neutron methods and Calphad computations continue to provide crucial, non-destructive characterization and predictive tools for the MHCoE.

• The structures of $Li_2B_{12}H_{12}$, $Na_2B_{12}H_{12}$, and $CaB_{12}H_{12}$ (possible intermediates in borohydride decomposition) were solved by a combination of XRD, neutron vibrational spectroscopy (NVS), and DFT calculations.

• NVS and NMR data are not inconsistent with the formation of a new $Ca(AIH_4)(BH_4)$ compound via ball-milling LiBH₄ + LiAIH₄ + CaCl₂. Yet, it appears that longer ball-milling times are required to complete the reaction, and proper interpretation requires DFT phonon calculations.

• NVS and PGAA indicate nontrivial amounts of residual H in carbon aerogels. We need to understand the effect of this H on the measurements and cycling properties of nanoconfined storage materials.

• Confinement of Li₃BN₂H₈ in nanoporous carbon materials renders it partially reversible.

• Only partially filling a 13 nm carbon aerogel with $LiBH_4$ increases the fraction that exhibits non-bulk-like BH_4^- reorientational dynamics. This may reflect preferential filling of smaller pores and/or surface film formation.

• Neutron imaging techniques can provide *in situ*, real-time diagnostics of practical hydrogen-storage beds. Using deuterium enables the imaging of thicker beds.

• A Calphad database for H-Li-Mg-Ca-B-Si-N with thermodynamic descriptions of the constituent subsystems is being developed from literature data for the binary solution phases and intermediate compounds and data from first-principles calculations.

• The modified Neumann-Kopp rule allows fast prediction of the heat capacities of complex metal hydrides.