

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

System Level Analysis of Hydrogen Storage Options

R.K. Ahluwalia, T. Q. Hua, J-K Peng and R. Kumar

2009 DOE Hydrogen Program Review May 18-22, 2009 Arlington, VA

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: ST_13_Ahluwalia

Overview

Timeline

- Project start date: Oct 2004
- Project end date: Sep 2014
- Percent complete: 50%

Barriers

- H₂ Storage Barriers Addressed:
 - A: System Weight and Volume
 - B: System Cost
 - C: Efficiency
 - E: Charging/Discharging Rates
 - J: Thermal Management
 - K: System Life-Cycle Assessments

Budget

FY08: \$525 K
FY09: \$725 K

Interactions

- FreedomCAR and Fuel Partnership
- Storage Systems Analysis Working Group, MH COE, CH COE
- BNL, LANL and PNNL, LLNL, SRNL, TIAX, H2A, UH/UNB, UTRC, and other industry

Objectives

- Perform independent systems analysis for DOE
 - Provide input for go/no-go decisions
- Provide results to CoEs for assessment of performance targets and goals
- Model and analyze various developmental hydrogen storage systems
 - On-board system analysis
 - Off-board regeneration
 - Reverse engineering
- Identify interface issues and opportunities, and data needs for technology development

Approach

- Develop thermodynamic and kinetic models of processes in physical, complex metal hydride, sorbent, and chemical hydrogen storage systems
- Calibrate, validate and evaluate models
- Work closely with the DOE Contractors, CoEs, Storage Tech Team, other developers, and Storage Systems Analysis Working Group
- Assess improvements needed in materials properties and system configurations to achieve H₂ storage targets

Technical Accomplishments

- Compressed Hydrogen (March 2009): Backup slides
- Gravimetric/volumetric capacity of compressed H₂ tanks, well-to-tank efficiency, validation with "Learning Demo" data
- Issuing a final joint report with TIAX on 350 and 700-bar systems
- Metal Hydrides (August 2008): Backup Slides
- Performance of on-board system with alane slurries
- WTT efficiency for off-board regeneration of alane
- Hydrogen Storage in Metal Organic Frameworks (June 2009)
- Performance of on-board system with off-board liquid N₂ cooling (storage capacity, charge and discharge dynamics, dormancy)
- Electricity consumed for cryogenic cooling
- Adiabatic refueling option
- Hydrogen Storage in Ammonia Borane (December 2008)
- WTT efficiency of AB regeneration (CHCoE/LANL/PNNL schemes)

Hydrogen Storage in Lithium Alanate (September 2009)

WTT efficiency of LiAIH₄ regeneration by UH/UNB Method

On-Board Storage of Hydrogen in Metal Organic Frameworks at Cryogenic Temperatures

Key Assumptions

	Parameter	Reference Values
Sorbent	MOF-177	J. Mater. Chem., 2007, 17, 3197-3204
	Skeletal density	1534 ka/m ³
	Crystallographic density	427 ka/m ³ (1.56 cm ³ /a pore volume)
	Bulk density	342 kg/m ³ (0.8 packing fraction)
	Thermal conductivity	0.3 W/m.K`
Conductive	40-PPI AI 2024 Foam	2-wt%
Support	Thermal conductivity	2.4 W/m.K
	Contact resistance	1000 W/m ² .K
Thermal	U-Tube Heat Exchanger	
	Material of construction	AI 2024 alloy
	Tube ID/OD	9.5/11.9 mm
	Tube sheet thickness	0.9 mm
Insulation	Multi-Layer Vac. Super Insulation	Aluminized Mylar [®] sheets, Dacron [®] spacer
	Layer density	28 cm^{-1}
	Density	59.3 kg/m ³
	Pressure	10-5 torr
	Effective conductivity	5.2x10 ⁻⁴ W/m.K
Tank	T700S Carbon Fiber	Toray Carbon Fiber
	Tensile strength	2550 MPa
	Density	1600 kg/m ³
	L/D	3
	Liner	2.4-mm thick AI 2024 alloy
	Shell	3-mm thick AI 2024 alloy
System	Miscellaneous weight	30 kg
	Miscellaneous volume	25 L

Modeled Hydrogen Adsorption Isotherms

H Furukawa, M Miller, M Yaghi (J. Mater. Chem. 2007, 3197 – 3204)

- MOF-177, Zn₄O(1,3,5-benzenetribenzoate) crystals
- Volumetric high-P gas adsorption measurements at SWRI[®]
- Gravimetric high-P gas adsorption measurements at UCLA
- Peak 75 g-H₂/kg surface excess at 77 K, 70 bar;110 g/kg absolute
- Low-T data fitted to Dubinin-Astakhov (D-A) isotherm with m=2.5

System Storage Capacity

- MOF-177 enhances the gas density by ~50% at 100 bar, but by <12% at 250 bar</p>
 - At 250 bar, 93% of stored H_2 recoverable with 24% on MOF and 76% within pores and void space
 - At 60% volumetric efficiency, need 75 kg/m³ medium storage density to achieve 45 kg/m³ system capacity
- System cannot reach 6-wt% and 45 kg/m³ (meets revised 2010 targets)
 - 4.5 wt% peak gravimetric capacity at ~250 bar
 - 32.4 kg-H₂/m³ peak volumetric capacity at ~425 bar

Weight and Volume Distribution

- 4.5-wt% gravimetric and 31.2 kg/m³ volumetric capacity at 250 bar
 - Medium and containment contribute almost equally to the overall weight

Weight Distribution

 – 58% volumetric efficiency which can be improved by reducing insulation at the expense of dormancy
 Volume Distribution

Refueling and Discharge Dynamics

- 7.2 MJ on-board cooling duty, 32.2 kW average heat transfer rate
 - 82% of the cooling duty is due to heat of adsorption
- Options for thermal management during discharge
 - Constant Q (1.8 kJ/g of H₂ discharged), 2.9 kW, 10.1 MJ heat duty
 - Variable Q, heat supplied only if tank pressure drops below 4 bar, peak heat transfer rate can exceed 20 kW (difficult to implement)

Dormancy

Dormancy: Function of amount of H₂ stored and P/T at start of the event

- Minimum dormancy is 15.4 W.d (7.8 days at 2 W in-leakage rate)
- Peak H₂ vent rate is 0.9 g/h/W (1.8 g/h at 2 W in-leakage rate)
- 116.7 W.d for venting of all stored H_2

Off-Board Refueling with LN₂ Cooling

- Estimated electric energy for cryogenic cooling is 10 kWh/kg-H₂
 - Off-board cooling duty to precool H₂ to 100 K: 2.8 MJ/kg-H₂
 - On-board cooling duty to remove heat of adsorption and cool tank internals: 1.3 kW/kg-H₂
 - LN_2 requirement: ~10 kg- LN_2 /kg- H_2
 - ~1 kWh/kg-LN₂ electric energy for distributed LN₂ production by air liquefaction (FOM of 0.205)

Adiabatic Refueling Option

- Adiabatic refueling with LH₂
 - On-board heat exchanger still needed but sized for discharge
- Optimum storage temperature (115 K) for maximum recoverable N_{ex}
 - Allowable ΔT increases with increase in storage T, $\Delta T = 0$ at 87K
 - Excess N_{ex} decreases with increase in storage T
- Optimum storage T (100 K) for maximum system capacity is < T at which recoverable N_{ex} is maximum
 - 4.8 wt% maximum system gravimetric capacity
 - 32 kg-H₂/m³ maximum system volumetric capacity

Sensitivity Analysis (LN₂ Cooling Option)

- Need to double the absolute adsorption for 6 wt% and 45 kg/m³ capacities at 250 bar, 100 K with 50 K temperature swing
 - 50% increase in absolute adsorption for the revised 2015 targets

Regeneration of Ammonia Borane (AB) from BNH₂

- Constructed process flowsheets for PNNL regeneration chemistry using concepts of limited reactants and excess reagents
- Digestion of spent fuel with excess t-BuOH in THF (D1); co-product B(O-t-Bu)₃ reacted with excess PhOH to form B(OPh)₃ (D3)
- Reduction of B(OPh)₃ with excess MH in an amine medium (R1)
- Add excess NH₃ to form BH₃NH₃ (A1)
- Recover MH from MX salt using excess H₂ in the presence of a base
- Two digestion approaches
 - Preserve BH bond in spent fuel
 - Recover residual H₂

Ref: Don Camaioni, Private Communication, PNNL (2008)

Process Energy for Regenerating 1 kg H₂ in AB

Analysis assumptions

- 85% thermal efficiency
- 2 times stoichiometric amount of reagents
- Reflux ratio of 0.5 in distillation steps
- Recovery of residual H₂ approach requires significantly more energy

BH Bond Preservation Approach

H₂ Recovery approach

Process	Q, MJ	Process	Q, MJ	E, kWh
Digestion		Digestion		
Distill THF solvent	27.6	Distill t-BuOH	103.5	
Distill t-BuOH	34.5	Distill PhOH Reduction	61.1	
Distill PhOH	40.8	Distill tertiary/secondary amine	14.9	
Reduction		Distill PhOH	61.1	
Distill tertiary/secondary amine	9.9	MH Formation		
Distill PhOH 40.8		Distill hexane	76.2	
MH Formation				0.0
Distill hexane solvent	50.8			2.3 0.1
Total		Total		0.1
0% heat integration	204.4	0% heat integration	316.8	2.4
30% heat integration	143.1	30% heat integration	221.8	2.4

FCHtool Analysis: Primary Energy & WTT Efficiency

- Preliminary estimate of WTT efficiency for spent AB regeneration by PNNL scheme is 25 - 47% (BH bond preserved)
- Recovery of residual H₂ approach lowers WTT efficiency by 5 7 percentage points

Primary Energy Consumption

Regeneration of LiAlH₄

UH/UNB scheme for regenerating LiAlH₄ from LiH, AI and H₂ in DME solvent at 100 bar and RT

 $\begin{aligned} &3\text{LiH} + \text{AI}(\text{Ti}) + 3/2 \text{ H}_2 \rightarrow \text{Li}_3 \text{AIH}_6 \\ &\text{Li}_3 \text{AIH}_6 + 2\text{AI}(\text{Ti}) + 3\text{H}_2 \rightarrow 3\text{LiAIH}_4 \end{aligned}$

- Constructed a process flowsheet without depressurizing the reactor
- Energy requirement for regeneration depends on molar ratio (α) of DME to LiAlH₄
 - Recent tests at UNB confirm regeneration for α = 5, 58% WTT efficiency
 - Potential to achieve 60% WTT efficiency if α reduced to ~4

Future Work

As lead for Storage System Analysis Working Group, continue to work with DOE contractors and CoEs to model, validate and analyze various developmental hydrogen storage systems.

Metal Hydrides

- On-board storage system for lithium alanate
- Regeneration of LiAIH₄ by UH/UNB schemes
- Regeneration of alane by organometallic and electrochemical routes

Sorbent Storage

- On-board system with spillover materials
- Further analysis of MOF system

Chemical Hydrogen

- On-board system for AB class of materials
- Fuel cycle efficiency of candidate materials and processes
- Joint report with TIAX on organic liquid carriers

Physical Storage

Update cryo-compressed storage analysis (LLNL Gen3 system)

BACKUP SLIDES

Carbon Fiber Netting Analysis

- Benedict-Webb-Rubin equation of state to calculate amount of stored H₂ for 5.6 kg recoverable H₂ and 20-bar minimum pressure
- Carbon fiber translation strength
 - 82.5% for 5,000 psi cH₂
 - 63% for 10,000 psi
- 2.35 safety factor
- 5-mm HDPE liner, 1-mm glass fiber, and 10mm foam end caps
- Construct optimal dome shape with geodesic winding pattern (i.e., along isotensoids)
- Geodesic and hoop windings in straight cylindrical section
- Iterate for tank diameter, CF thickness (nonuniform in end domes), given L/D
- Commercial data for BOP components

Ref: http://www.adoptech.com/pressure-vessels/main.htm

On-board System Gravimetric Capacity

On-board System Volumetric Capacity

Comparison of ANL Analysis with "Learning Demos"

Electricity Consumption and WTT Efficiency (Pipeline Delivery)

Compression ^(a)		# of	Isentropic	Electricity	WTT	Comments	
P _i (bar)	P _f (bar)	Stages	efficiency	(kWh/kg)	efficiency ^(b)	Commonto	
20	70	3	88%	0.6		Central plant, ∆P = 50 bar	
20	180	5	65%	1.5	-	Forecourt	
180	425	2	65 %	0.6	-	Forecourt	
180	850	3	65 %	1.1	-	Forecourt	
20	425	7	65 - 88%	2.7	58.0%	5,000 psi on-board storage	
20	850	8	65 - 88%	3.3 ^(c)	56.1%	10,000 psi on-board storage	

Notes:

- a) Compressor mechanical efficiency = 97%, motor efficiency = 90%
- b) H₂ produced by SMR central plant, electricity source from U.S. grid 2015, inclusive of 8% transmission loss
- c) Includes 0.14 kWh/kg for precooling from 25°C to -40°C

Life Cycle Greenhouse Gas Emissions (Pipeline Delivery, g/kg H₂)

5,000 psi on-board storage

	VOC	со	NOx	PM ₁₀	SOx	CH4	N ₂ O	CO ₂	GHGs
H ₂ Production	1.55	3.62	7.34	2.20	2.71	29.93	0.06	14,068	14,774
H ₂ Storage	0.12	0.35	1.33	1.60	2.91	1.76	0.02	1,259	1,567
H ₂ Distribution	0.05	0.26	0.13	0.04	0.05	0.17	0.01	155	497
Total:	1.71	4.23	8.80	3.84	5.68	31.86	0.08	15,482	16,838

10,000 psi on-board storage

	VOC	со	NO _x	PM ₁₀	SOx	CH ₄	N ₂ O	CO ₂	GHGs
H ₂ Production	1.55	3.62	7.34	2.20	2.71	29.93	0.06	14,068	14,774
H ₂ Storage	0.19	0.57	2.17	2.62	4.76	2.87	0.03	2,056	1,953
H ₂ Distribution	0.05	0.26	0.13	0.04	0.05	0.17	0.01	155	579
Total:	1.79	4.45	9.64	4.85	7.53	32.98	0.10	16,279	17,306

Summary

- Dome shape and carbon fiber thickness were determined by netting analysis
- Minimum tank pressure affects system gravimetric and volumetric capacities while tank geometry (L/D) affects only gravimetric capacity
- WTT efficiency is within six percentage points of DOE target of 60%

For 5.6 kg recoverable H_2 and L/D = 3

H ₂ Tank Pressure (bar)	Minimum Pressure (bar)	Gravimetric Capacity (wt%)	Volumetric Capacity (g/L)	Electricity (kWh/kg)	WTT Efficiency (%)
350	20	5.9	17.5	2.7	58.0
350	4	6.2	18.5	2.7	58.0
700	20	4.7	25.2	3.3	56.1
700	4	4.8	26.0	3.3	56.1

H₂ Storage as Alane Slurry

- Investigated several methods of storing alane in powder and liquid forms and selected slurry for initial evaluation
- Pros and cons of storing alane as slurry
 - Pros: heat transfer, easier refueling, liquid infrastructure, practical
 - Cons: reduced material capacity, added difficulty in recycling spent fuel

Component	Key Assumptions		
Fuel Tank	Volume-exchange concept, 10%		
	ullage, 5.6 kg usable H_2		
AIH ₃ Slurry	70 wt% AlH $_3$ in light mineral oil		
Heat Transfer Fluid	XCELTHERM ®		
	Slurry on tube side, HTF on		
	shell side, s/d=1.1, slurry at 100		
Denydrogenation Reactor	bar, HTF at 3 bar, 1.6 g/s peak		
	H_2 consumption in FCS		
AIH ₃ Dehydrogenation	Avrami-Erofeyev rate expression		
Kinetics			
	50 kWt, non-catalytic, HTF		
HEX Burner	pumped to stack P, 100°C		
	approach T, 5% excess air		
H Ballact Tank	100 bar, 75°C, AL-2219-T81		
	alloy tank, 2.25 SF		
Recuperator, H ₂ Cooler,			
Spent Slurry Cooler	p - buse approach i		

Assessment of Results

- Under optimum conditions, ~80% of H₂ stored in slurry is available for use in fuel cell system.
- Usable gravimetric capacity
 <4.25 wt% H₂, ~75% gravimetric efficiency
- Usable volumetric capacity ~50 g-H₂/I, 73% volumetric efficiency

Data Needs

- Preparation of 70-wt% AIH₃ slurry, effect of particle size distribution, surfactants, etc
- DeH₂ kinetics of AIH₃ slurry, fluid dynamics of slurry in micro-channel HX
- H₂ recovery from fuel tank

	Value	Units	Range
Intrinsic Material Capacity	10.0	g-H ₂ /g-AlH _{3,} %	Variable T _{HTF} ,
H ₂ Capacity in Slurry	7.0	g-H ₂ /g-slurry, %	Fixed LHSV
Recoverable H ₂ Capacity	6.9	g-H ₂ /g-slurry, %	_θ : 11.3-97.9%
Available H ₂ Capacity	6.3	g-H ₂ /g-slurry, %	η _{DC} : 82.8-93.1%
Usable H ₂ Capacity	5.6	g-H ₂ /g-slurry, %	_{ηs∪} : 84.7-91.3%
Usable Gravimetric Capacity	4.2	g-H ₂ /g-system, %	0.5-4.2
Usable Volumetric Capacity	49.8	g-H ₂ /L-system	5.9-50.0
Peak H ₂ Loss at 25°C	0.3	g-H ₂ /h	0-0.3
Peak H ₂ Loss at 50°C	7.7	g-H ₂ /h	0-7.7

Regeneration of Alane - ANL Reference Flowsheet

Form AIH_3 as adduct to TMA in ether in the presence of $LiAIH_4$.

$$n_1 A l + \frac{3n_1}{2} H_2 + n_2 N (CH_3)_3 \xrightarrow[\text{catalyst}]{\Lambda-pres.} (A l H_3)_{n1} \cdot (N (CH_3)_3)_{n2}$$

Displace TMA from TMAA in ether by TEA (transamination).

$$(AIH_3)_{n1} \cdot (N(CH_3)_3)_{n_2} + n_2 N - R_2 \longrightarrow (AIH_3)_{n1} \cdot \begin{pmatrix} R_1 \\ N - R_2 \\ R_3 \end{pmatrix}_{n2} + n_2 N(CH_3)_3$$

Decompose TEAA in presence of LiAIH₄ (thermal decomposition)

$$(AIH_3)_{n1} \cdot \begin{pmatrix} R_1 \\ N-R_2 \\ R_3 \end{pmatrix}_{n2} \xrightarrow{\Lambda} \frac{n_1}{x} (AIH_3)_x + n_2 N-R_2 \\ R_3 \end{pmatrix}_{n2}$$

 For high conversion, use excess amounts of reagents.
 H₂ Stoichiometry: Φ_{H2}
 TMA Stoichiometry: Φ_{TMA}
 TEA Stoichiometry: Φ_{TEA}

FCHtool Analysis: Preliminary WTT Efficiency

- Without credit for availability of low-grade heat, the WTT efficiency is 40.5% (Φ_{H2} =10, Φ_{TMA} =1.4, Φ_{TFA} =1.4).
 - Q: 71.9 MJ/kg-H₂, E: 3.6 kWh/kg-H₂
- A single-variable parametric analysis indicates that WTT efficiency is most sensitive to the availability of low-grade waste heat.
- We are working with BNL to verify the process steps and determine the operating conditions.

Q: $MJ/kg-H_2$, E: $kWh/kg-H_2$

Hydrogen Storage Capacities

- ANL modeling results for various hydrogen storage systems
- System capacities based on recoverable H₂ delivered to fuel cell

- Cryo-compressed option with AL shell can meet the gravimetric target (but not volumetric)
- Alane slurry option may meet the volumetric target (but not gravimetric)

System Volumetric Capacity (g-H₂/L)

Well-To-Tank Efficiency

