

Donald L. Anton Director

May 19, 2009

Project ID#ST_14_Anton

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

•Start: February 1, 2009

•End: January 31, 2014

•3% Complete (as of 3/31/09)

Budget

Total Project Funding:

- DOE Share: \$39,936,000
- Contractor Share: \$4,106,000
- FY '09 Funding: \$7,000,000

Prog. Mgmt. Funding

FY '08: \$0

HSECOE

FY '09: \$611,000

Barriers

- **B. System Cost**
- C. Efficiency
- **D.** Durability
- G. Materials of Construction

A. System Weight and Volume H. Balance of Plant (BOP) Components

- **J.** Thermal Management
- K. System Life-Cycle Assessment
- L. High Pressure Conformality
- E. Charging/Discharging Rates S. By-Product/Spent Material Removal

Partners

Center Goals

• Primary goals:

- Quantify the requirements for condensed phase hydrogen storage systems for light duty vehicle applications.
- Coordinate with all other DOE hydrogen storage programs to compile their media and systems requirements and data.
- Demonstrate the technologies required to achieve the DOE hydrogen storage 2015 goals.

• Secondary goal:

• Dissemination of new design tools, methodologies, and components required to develop condensed phase hydrogen storage systems.

Technical Objectives

 Using systems engineering concepts, design innovative system architectures with the potential to meet DOE performance and cost targets.

Develop system models that lend insight into overall fuel cycle efficiency.

•Compile all relevant materials data for candidate storage media and define future data requirements.

•Develop engineering and design models to further the understanding of onboard storage **energy management requirements**.

•Develop **innovative on-board system concepts** for metal hydride, chemical, and sorption materials-based storage technologies.

•Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts, validate model predictions, and improve both component design and predictive capability.

•Design, fabricate, test, and decommission the **subscale prototype systems** of each materials-based technology (metal hydrides, sorption and chemical hydrogen storage materials).

Management Objectives

- Effectively integrate the partner's required key technical activities
- Facilitate their collaboration.
- Interface with external stake holders to communicate progress and transfer technology.

Technical Area Matrix

Hydride Type				
Metal Hydride	Sorption	Chemical		
Performance Analysis				
Integrated Power Plant/Storage System Modeling				
Enabling Technologies				
Materials Operating Requirements				
Transport Phenomenon				
Subscale Prototype Construction, Testing and Evaluation				

Hydrogen Storage systems have numerous elements of their design common between hydride types. In order to maximize return on investment and minimize risk, teams of experts on individual technical topics will be assembled to address these technical areas across hydride system types.

Six **Technical Areas** have been identified and spanning hydride types. These areas are defined as:

- 1. **Performance Analysis** will determine hydrogen storage system requirements
- 2. System Modeling will predict performance

HSEC₀E

- 3. Enabling Technologies will mitigate technical weaknesses of the hydrides
- 4. Materials Requirements will establish materials operating characteristics
- 5. Transport Phenomena will optimize thermal and mass transfer concepts
- 6. Prototype Evaluation will design, construct and test prototype systems

Technical Team Matrix

To address the risks, the Technology Areas are composed of a series of Technology Teams expert in their area of knowledge

Hydride Type			
Metal Hydride	Sorption	Chemical	
Performance Analysis			
Vehicle Requirements			
	Tank-To Wheels		
	Forecourt Requirements		
Manufacturing & Cost Analysis			
Integrated Power Plant/Storage System Modeling			
Power Plant Modeling			
On-Board Rechargeable System Integration			
Off-Board Rechargeable System Integration			
Enabling Technologies			
Hydrogen Purity			
Thermal Devices			
Thermal Insulation			
	Sensors		
	Containment & Pressure Vessels	S	
Materials Operating Requirements			
MCoE Collaboration			
Reactivity			
Materials Compatibility			
Kinetics			
Transport Phenomenon			
Thermal Transport			
Media Structure and Enhancement			
Bulk Materials Handling			
Co/No Co Decision			
Subscale Proto	type Construction Testing	and Evaluation	
Subscale 110to	Component Integration		
	Risk Assessment/Mitigation		
Design and Ontimization			
Fabricate Subscale System Components			
Ass	emble & Evaluate Subscale Sys	tem	

Technical Task Matrix

(Typical)

- The Technology Teams will work on specific Technology Tasks required for each hydride type. These tasks will sum to the required development necessary to design, build and test subscale prototype systems.
- Technical Team descriptions will be elucidated in partner's posters.

Hydride Type				
Metal Hydride	Sorption	Chemical		
Transport Phenomenon				
	Thermal Transport			
Model HX fo	r Component	Model HX for reactor		
Design/Evaluate HX Components		Design HX Components		
Validate Models		Validate Models		
Media Structure and Enhancement				
	Bulk Materials Handling			
Model Mass Fl	low for System	Model Mass Flow for Reactor		
Design/Evaluate Mas	ss Flow Components	Design/Evaluate Mass Flow Components		
Validate	Models	Validate Models		
	Hydrogen Mass Transport			
Model Mass Fl	low for System	Model Mass Flow for Reactor		
Design/Evaluate Mas	ss Flow Components	Design/Evaluate Mass Flow Components		
Validate	Models	Validate Models		

Technical Area Organization

10

Program Management

HSECOE

- Total Program Gantt Chart tracked including deliverables, reports, & milestones using Primavera updated quarterly.
- Technical Area and Technical Team progress reported utilizing Quad Chart format quarterly.

Important Dates

HSECoE

- Duration: 5 years
 - Phase 1 Start: Feb. 1, 2009
 - Phase 2 Go/No-Go Determination: Oct. 31, 2010
 - Phase 2 Start: Feb. 1, 2011
 - Phase 3 Go/No-Go Determination: July 31, 2012
 - Phase 3 Start: Aug. 1, 2012
 - Completion Date: Jan. 31, 2014

HSECoE Go/No-Go Decisions

Phase I / Phase II Go/No-Go Decision Q3 Y2:	 Provide a system model for each material sub-class (metal hydrides, adsorption, chemical storage) which shows: 4 of the DOE 2010 numerical system storage targets are fully met The status of the remaining numerical targets must be at least 40% of the target or higher
Phase II / PhaseIII Go/No-Go Decision Q2 Y4:	 Provide at least one full scale system design concept (5kg H₂ stored) where: 6 of the DOE 2015 numerical targets are fully met The status of the remaining numerical targets must be at least 50% of the target or higher

These Go/No-Go decisions require the HSECoE to consider and approach each of the DOE goals individually, and <u>not</u> concentrate only on one or two.

Phase 1 Deliverables, Milestones and Decisions

Deliverable Reports

- Automotive & Materials Requirement
- Materials Data Compilation
- Subcomponent Design Models/Validation
- Efficient Hydrogen Storage System Concepts

Technical Milestones

- Identify vehicle operating requirements
- Define hydrogen storage system requirements
- Define materials data requirements
- Describe required thermal & mass transport methods

Go/No-Go Decisions

Provide a system model for each material sub-class (metal hydrides, adsorption, chemical storage) which shows:

- 4 of the DOE 2010 numerical system storage targets are fully met
- The status of the remaining numerical targets must be at least 40% of the target or higher

Phase 2 Deliverables, Milestones and Decisions

Deliverable Reports

- Advanced vehicle power plant requirements
- Detailed materials data base
- Validated subcomponent models
- Provisional subscale concepts & designs

Technical Milestones

- Identify vehicle architectures
- Assess materials characteristics
- Identification of necessary heat & mass transport methods
- Identification of enabling technical components

Go/No-Go Decisions

Provide at least one full scale system design concept (5kg H₂ stored) where:

- 6 of the DOE 2015 numerical targets are fully met
- The status of the remaining numerical targets must be at least 50% of the target or higher

Phase 3 Deliverables and Milestones

• Deliverables

- Hazard risk assessment for selected media
- Design optimization for each media type down selected
- Subscale prototype for each media down selected
- Detailed test plan
- Subscale test station
- Reports documenting results of subscale system tests
- Decommissioning of subscale prototypes

Milestone

• Design build and evaluate down selected subscale hydrogen storage systems.

Intra-Center Communications

- Intra-Center WEB site utilizing SharePoint will be established to facilitate the transfer of data and share results within the Center
- Regular Technology Team telecons
- Monthly Technology Area telecons
- Quarterly Coordinating Council telecons
- Semi-annual HSECoE Face-2-Face meetings to be held at rotating partners locations
- Quarterly technical progress reports
- Annual technical summary reports

Extra-Center Communications

6

HSECoE

18

Technical Gap Identification

 It is recognized that in key technical areas a critical risk may be identified which needs to be addressed with specific WBS tasks.

- Technical gap identification will continue throughout the duration of the Center.
- These gaps will be quantified to the extent possible at F2F meetings.
- These gaps will be communicated through the WEB site and at AMRs so that potential solutions are considered and proposed from outside the Center to DoE through annual solicitations.
- These proposed technologies may be incorporated into the Center with the consent of DoE, the HSECoE & the awardee.

IP Plan

Objectives

• To encourage the beneficial exchange of technical information and promote the creation of intellectual property.

• To ensure the proprietary rights of all Partners are appropriately protected.

• To secure Partners of the HSECOE appropriate benefits based on their contributions to Award Work.

• To promote the rapid dissemination of information and maximize commercial development of inventions for the public good.

• Establish Intellectual Property Management Committee (IPMC)

- Information Sharing
- Reporting Requirements
- Intellectual Property Prosecution
- Licensing/Royalties

HSECoE

Addition/Termination of Partners

• IP Agreement signed by all partners Jan. 31, 2008.

Safety Plan

- The Assistant Director will form and lead a Safety Review Committee comprised of key Center representatives.
- The Safety Review Committee will coordinate submission and review Safety Plans from each partner and subcontractor within 90 days of program start based on the DOE Safety Planning Guidance for Hydrogen Projects.
- The primary objectives of the Safety Review Committee will be to communicate newly identified safety issues, new practices, near misses and lessons learned obtained from all of the other Centers of Excellence as well as the hydrogen community as a whole.
- Communication will make use of Center face-to-face meetings, telecons, website postings/archives and direct contact as warranted.
- Designated Subject Matter Experts will be available to review partner's operations to adequately identify hazards and recommend appropriate hazard controls, especially for prototype operations involving higher risks.

Accomplishments

Kick-Off meeting held Dec. 10, Washington, D.C.

USCar Tech Team meeting held Dec. 11, Washington, D.C.

IP Agreement signed Jan. 31, 2009

Face to Face Meeting held Feb. 23-25, 2009, Golden, CO

- Modifications to TA structure
- Quad charts completed
- 1st 100 day plan set

Team and Center Milestones Go/No-Go negotiated, Feb. 28, 2009 Established External WEB site, April 1, 2009

Safety plan completed May 1, 2009

Face to Face Meeting held May 18, 2009

- Materials data requirements established
- 1st draft of media readiness established

Project Summary

Relevance: Bring all of the technologies being studied for hydrogen storage to demonstration

- **Approach:** Model and optimize the necessary hardware required to build hydrogen storage systems, validate models and design and test prototype hydrogen storage systems.
- **Technical Accomplishments:** Brought team together and negotiated technical team assignments, milestones and deliverables.
- **Collaborations:** HSECoE Team, external DOE stakeholders and international collaboration
- Proposed Future Research: Initiate programs in vehicle modeling, system modeling, materials requirements, transport phenomena and enabling technologies.

