Chemical Hydrogen Storage R&D at Los Alamos National Laboratory

Project ID# ST_17_Burrell

Roshan Shrestha, Ben Davis, Himashinie Diyabalanage, Anthony Burrell, Neil Henson, Michael Inbody, Kevin John, Troy Semelsberger, Frances Stephens, John Gordon, Kevin Ott, Andy Sutton, Koyel Bhattacharyya

2009 DOE Annual Merit Review Arlington, VA

This presentation does not contain any proprietary or confidential information

Overview

TimelineBarriers• Start: FY 05• Weight and Volume• End: FY 09• Flow Rate• 80% Complete• Cost• Regeneration Process• System Life-Cycle Assessments

Budget •Estimated Project Funding - \$9.61 M •FY 08 - \$2,455 K •FY 09 - \$2,750 K

Partners

- Chemical Hydrogen Storage
 Center of Excellence
- IPHE (Singapore, UK, New Zealand)
- Hiroshima University, Japan

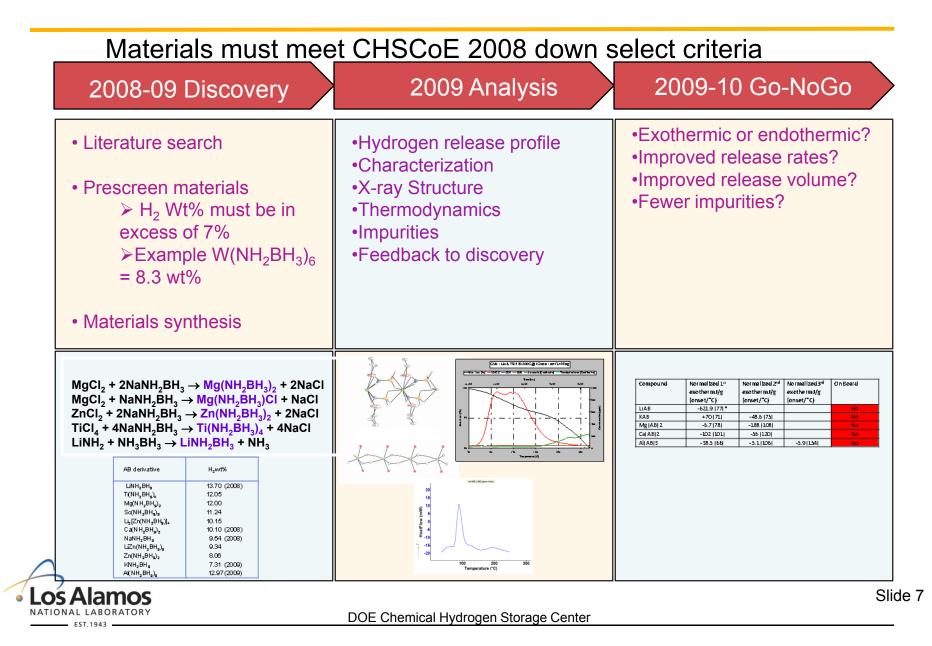
- Provide preliminary cost analysis of LANL regen process
- Develop and demonstrate heterogeneous catalysts and continuous flow reactor operation
- Develop liquid ammonia-borane (AB) fuels and increase rate and extent of hydrogen release
- Identify and demonstrate new materials and strategies for nearthermoneutral hydrogen release (ΔG_{\circ} = ideally no less negative than ca. –0.8 kcal/mol)
- Develop materials and processes to minimize gas-phase impurities, and demonstrate adequate purity of hydrogen stream

Relevance - Milestones

 Ranked list of heterogeneous catalysts vs. capacity and rate (3Q0 Ranked list of liquid fuel formulations with hydrogen content and line 	
	quid range (3Q09)
determine volatile byproduct speciation and quantity (4Q09).	OOE 2010 performance targets for capacity and rate, and
Deliver optimal, demonstrated AB regeneration scheme using the chemical efficiency (3Q09)	thiacatechol approach with highest thermodynamic and
Go/ No Go Decision on formic acid process (1Q09)	
Demonstrate integrated regeneration cycle (2Q09)	
Initiate assessment of regenerating spent liquid fuels (1Q09)	
Demonstrate >2 integrated regeneration cycles (4Q09)	
Tabulations of compound formulae vs. hydrogen content and rates	of release (4Q09)
Summary of preliminary hydrogenation experimental results (4Q0)	9)
Complete assessment of hydrogen capacity, release rate, and energy amidoboranes having > 7 wt. % hydrogen (4Q09)	rgetics of release and potential rehydrogenation of metal
Provide recommendation to DOE for future research in metal amic	loboranes (4Q09)
Decision on formic acid as a hydrogen transfer reagent (1Q09)	
Decision on direct rehydrogenation as an approach to M-H recycle	e (1Q09)
Operational cyclic regeneration reactor system (2Q09)	
Integrated communication plan with Hydrogen Storage Engineerin ECoE.	g Center of Excellence (3Q09) assuming 1Q09 start for

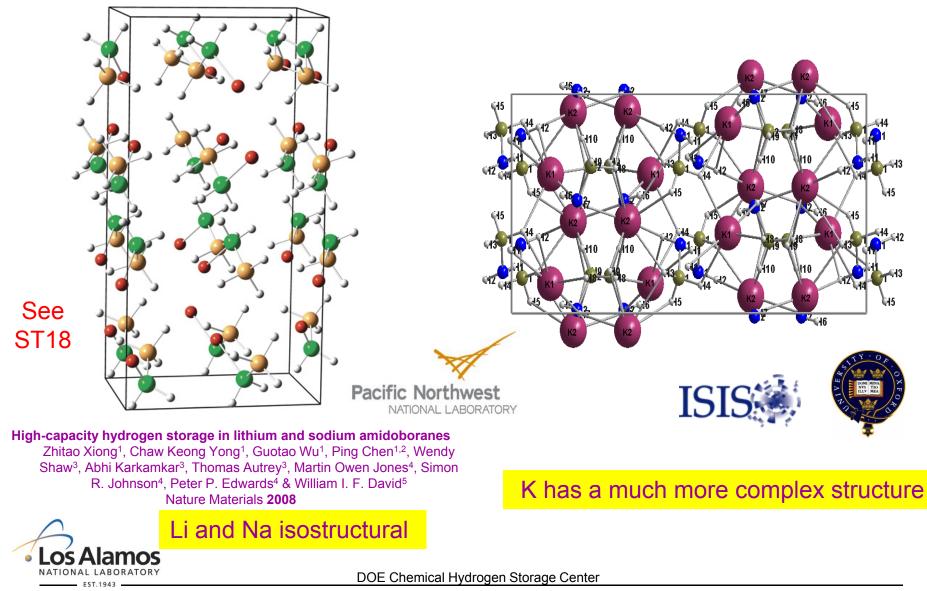
Approach: Los Alamos Technical Contributions

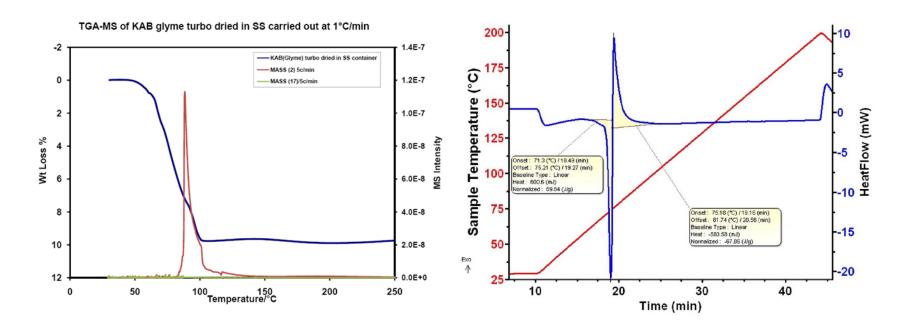
- Engineering Guided Research
 - Gas cell analysis of impurities in hydrogen release
 - Fabricate and operate continuous flow reactor for heterogeneous catalyst testing
 - Cost Analysis of LANL regen scheme with Rohm & Hass
 - Interfacing with Engineering CoE
- New hydrogen storage materials for portfolio
 - Design and synthesis of nearthermoneutral release materials
 - Design and synthesis of liquid fuel compositions
- Hydrogen Release
 - Identify reaction pathways to maximal storage and release rates
 - Design, synthesize, and demonstrate heterogeneous catalysts with high rates at T < 100 °C
 - → New Base Metal catalysts


- Demonstrate all individual steps to ammonia borane from spent fuel and begin process integration
- Refined stoichiometry, concentrations, separations, substitutions, reaction times, materials properties etc
- Cost Analysis of LANL regen scheme with Rohm & Haas completed
- Use theory to guide toward most energy efficient matching of regeneration reactions
- New reagent development
- Patents
 - Published 8
 - Pending 8
 - Disclosures 6

Technical Accomplishments since last review

- Cost Analysis on LANL regen process completed in collaboration with Rohm & Haas
- New materials have been prepared that have lower exothermicity, higher rates and higher extents of release compared to ammonia borane which exceed 2010 targets
- Liquid fuel compositions have been expanded with both alkylamine and ionic liquid options
- Heterogeneous base metal catalysts for hydrogen release have been prepared and demonstrated to have high rates of release to > 9 wt % H₂
- A complete cycle "first pass" regen cycle has been proven with overall yield of spent fuel digestion through reduction steps exceeding 70%
- Flow reactor for catalyst screening and liquid fuel assumed using gas phase analysis assembled and underway
- Hydrogen stream purity analysis system has been assembled and is operating to identify and quantify impurities in H₂ stream

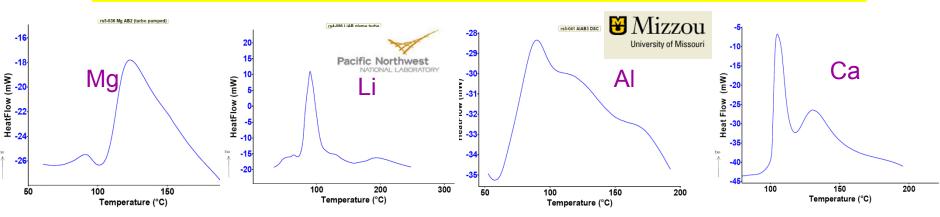

Approach – New Materials Development

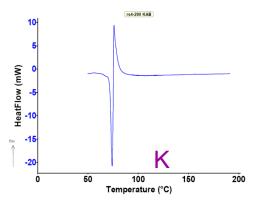

Technical Accomplishments and Progress Onboard options using new materials: The search for improved thermodynamics and kinetics

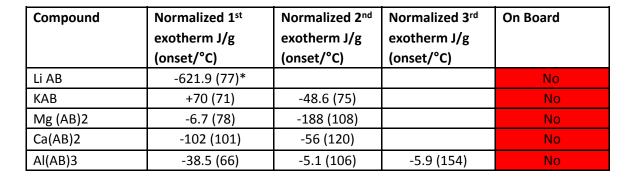
AB derivative	H ₂ wt%	Pacific Northwest NATIONAL LABORATORY ST18
LiNH ₂ BH ₃	13.70 (<mark>2008</mark>)	
$Ti(NH_2BH_3)_4$	12.05	Mizzou University of Missouri STP20
$Mg(NH_2BH_3)_2$	12.00	
Sc(NH ₂ BH ₃) ₃	11.24	ISIS
Li ₂ [Zn(NH ₂ BH ₃)] ₄	10.15	AST NOP
Ca(NH ₂ BH ₃) ₂	10.10 (<mark>2008</mark>)	
NaNH ₂ BH ₃	9.54 (<mark>2008</mark>)	*
LiZn(NH ₂ BH ₃) ₃	9.34	INDUSTRIAL
$Zn(NH_2BH_3)_2$	8.06	RESEARCH
KNH ₂ BH ₃	7.31 (<mark>2009</mark>)	
AI(NH ₂ BH ₃) ₃	12.97 (<mark>2009</mark>)	
		HIROSHIMA UNIVERSITY

Technical Accomplishments and Progress Structures of alkali metal salts changes at potassium

Technical Accomplishments and Progress 2009 Hydrogen release from solution prepared KAB




Less exothermic hydrogen release in one step with no impurities observed in the gas phase (yet)

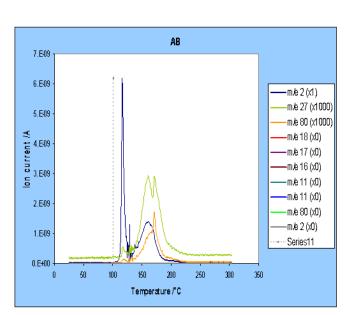


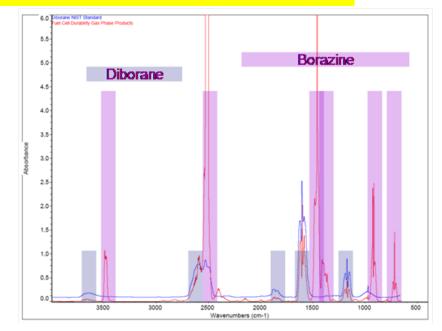
2009 Thermal release profiles vary significantly

So far all have exothermic hydrogen release but there are differences!

These compounds cannot be on-board regenerated. Work with adducts and mixtures will continue

For continued release development materials must be able meet DOE targets CHSCoE criteria for materials are:


Criterion	Description	Metric
Gravimetric Capacity	Maximum calculated hydrogen weight fraction	> 7 wt. % H ₂
Potential to Regenerate On- Board	Potential to rehydrogenate spent fuel directly	yes/no/?
Regenerable	Ability to chemically reprocess spent fuel off board	yes/no/?
Acceptable Phase Change	Problematic liquid to solid phase change, or volatile byproducts	yes/no/?
Acceptable Release Rate	ate Maximum rate of hydrogen release, T< 125 °C n	
Material Stability	Stable in fuel tank< 50 °C	yes/no/?
Endothermic Release	Hydrogen release occurs endothermically	yes/no/?
Low Temperature	For endothermic reactions, temperature of release <200 °C (with potential for lower T, i.e., 80 °C, release)	Temperature



Technical Accomplishments and Progress

2008 Purity issues with hydrogen released from NH₃BH₃

Simple thermal release results in impurities in the hydrogen released

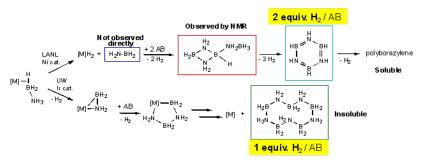
Diborane and borazine detected by IR as impurities from thermal release

 $n \operatorname{NH}_3\operatorname{BH}_3 \rightarrow (\operatorname{NH}_2\operatorname{BH}_2)_n + n \operatorname{H}_2 \rightarrow (\operatorname{NHBH})_n + n \operatorname{H}_2$

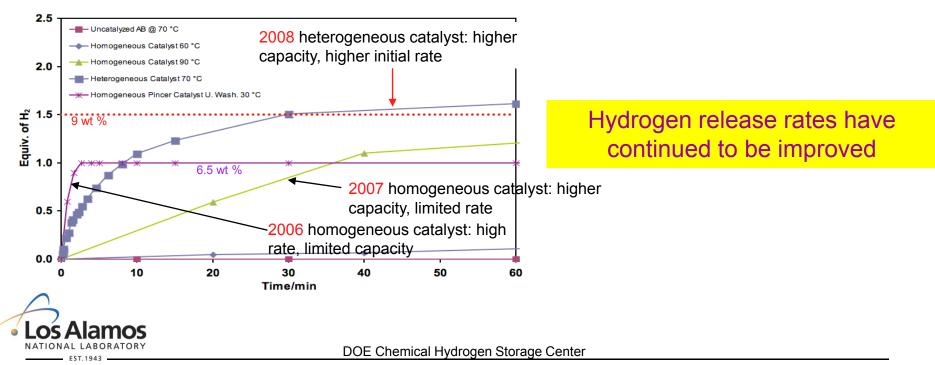
DOE Chemical Hydrogen Storage Center

80-110 °C

6.5 wt%

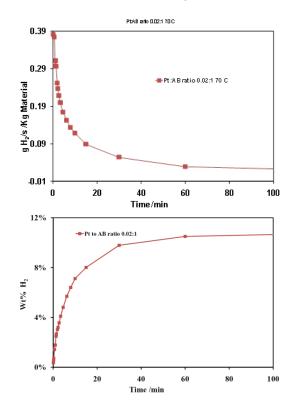

150 °C

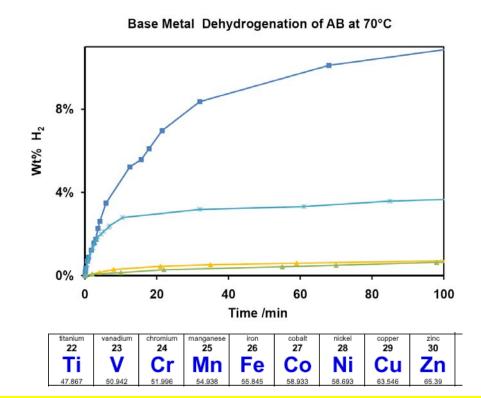
6.5 wt%


Total 13 wt% below 150 °C

Slide 13

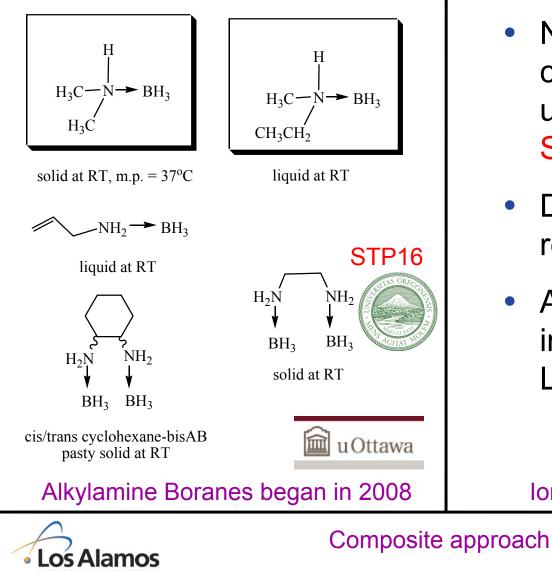
Previous (2005-2008) work elucidated the mechanism of catalyzed H₂ release from Ammonia-Borane


Work from 2005-2008 shows catalysis can change the release mechanism and thereby change and eliminate the impurities


2009 Heterogeneous Catalysts

Release rates using catalysts have potential to exceed DOE targets

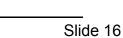
Platinum catalyst is fast 70 °C



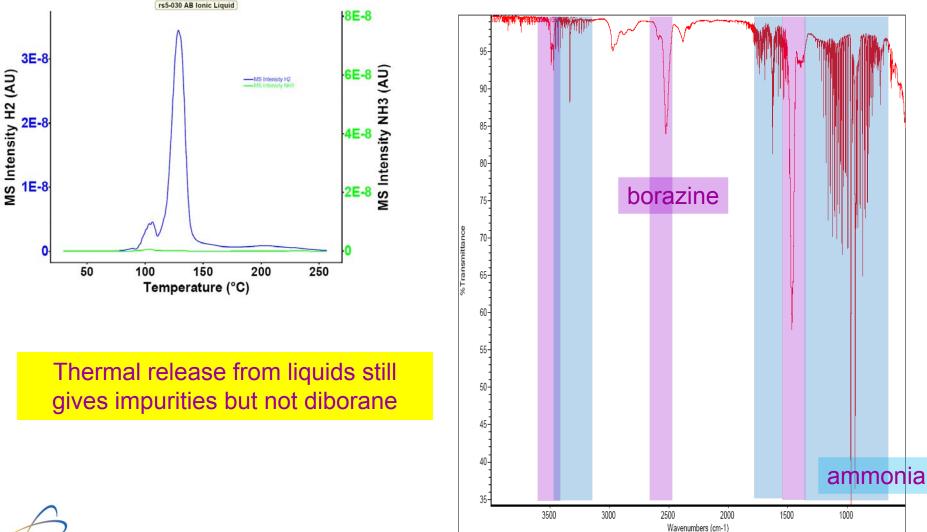
H₂ Release rates with base metals potential to exceed DOE materials target with base metal at lower temp. with the same capacities as the Pt catalyst

Technical Accomplishments and Progress 2009 Liquid Fuels

(several options under investigation)

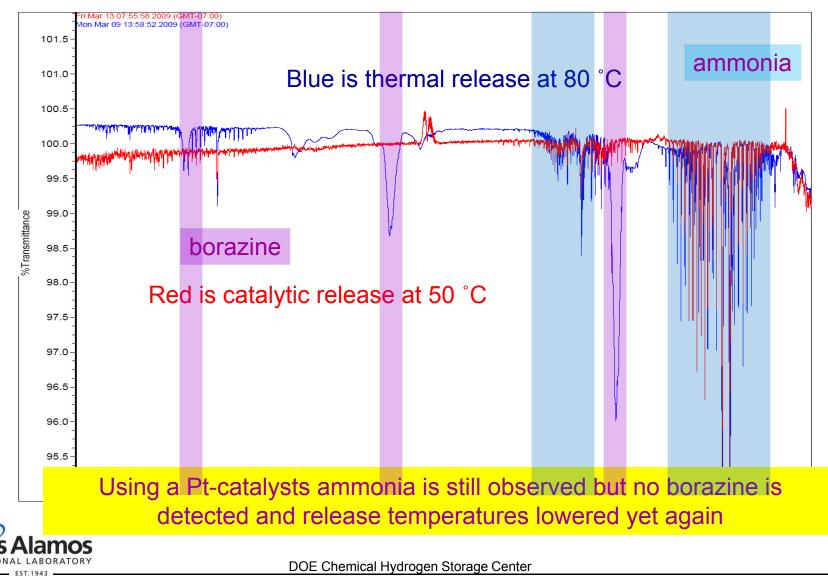


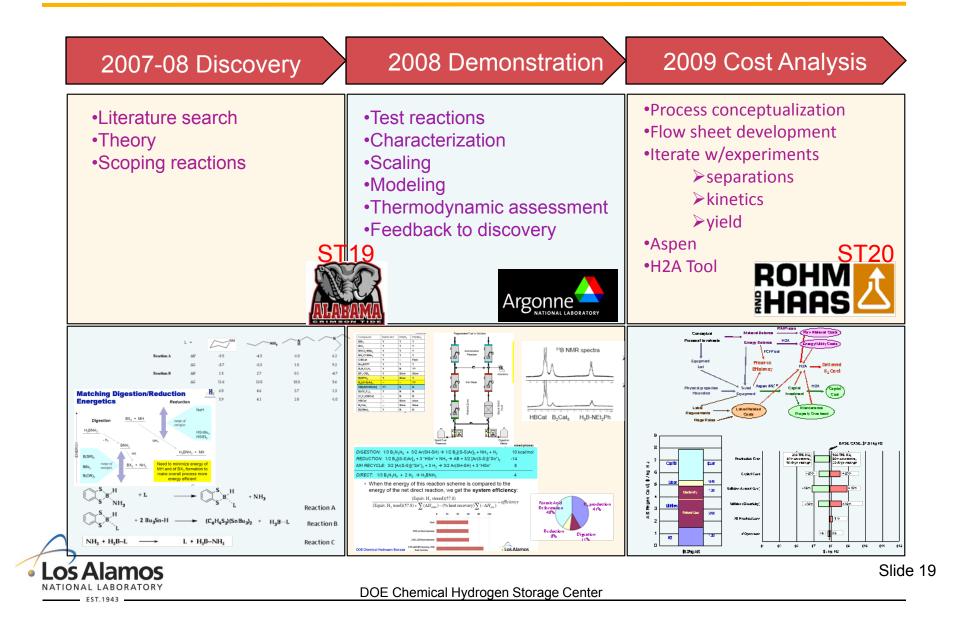
 New ionic liquid compositions based upon the work of Penn ST16


- Demonstrate excellent release rates
- Analysis of gas impurities underway at LANL

Ionic liquid systems new for 2009

Technical Accomplishments and Progress


2009 Impurities in Ionic Liquid based liquid fuels



Technical Accomplishments and Progress

2009 Catalysis in the IL AB mix release at 50 °C

Approach - Off-Board Regeneration

Technical Accomplishments and Progress Off-Board Regeneration Required (timeline 2008-2009)

3 Ammonia Borane (H_3N-BH_3) \rightarrow **Spent fuel** ($B_3N_3H_4$) + 7 H_2

2007 – Thiol based digestion of spent fuel first demonstrated

Mid 2007 – Tin hydrides observed to form ammonia borane (AB)

2008 – Digestion/reduction combined into one cycle

Mid 2008 – Feedback from TT, AMR increases emphasis on process analysis, cost; optimization of reactions, reducing unit operations

 $\begin{array}{l} August \ 2008 \ - \ Center \ `Engineering \ Summit' \ in \\ Philadelphia \ with \ R/H \end{array}$

Fall/Winter 2008/2009 – Iterative process modifications with R/H input; current scheme to R/H for baseline cost analysis $\Delta H \approx$ -7 kcal/mol

(Miranda and Ceder 2007)

•Jan 2008 Regeneration Scheme

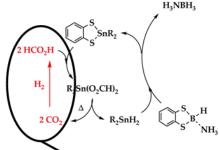
ANL Assessment

•June 2008 Scheme

•Work to R/H Baseline Analysis

•R/H Improvement Areas

•Ultimate Goal


<u>Center of Excellence Targets</u>: 60% process efficiency for regeneration \$2-4 gallon of gas equivalent for H₂ stored

Technical Accomplishments and Progress 2008 ANL Assessment Identifies CO₂ Recompression as a Major Energy Concern

Must replace CO₂ as a hydrogen

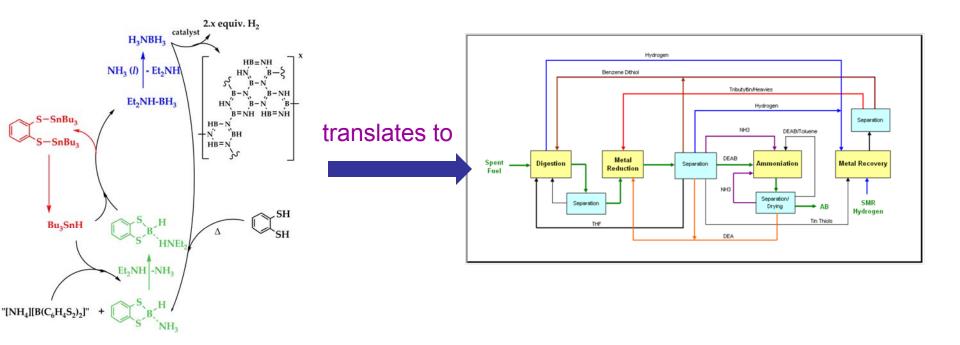
transfer reagent

Recompression too energy intensive

Formic Acid Reformation 40% Reduction 8% Digestion 11%

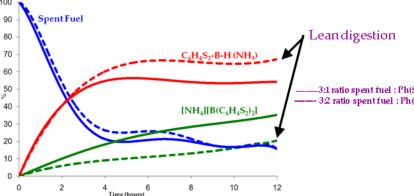
2009 Launched multiple efforts to address

reductant recycle as a major energy concern

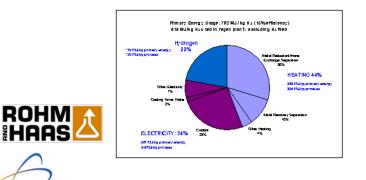

- •Methane to formic acid to replace H_2 MSR (LANL, R&H)
- •More efficient tin format recycle (UC-Davis STP18)
- •Electrochemical recycle of metal hydrides (PSU STP19)
- •Replacements for CO₂ (LANL)
- •Transition metal hydrides (PNNL)
- •Direct hydrogenation of tin-sulfur (LANL)

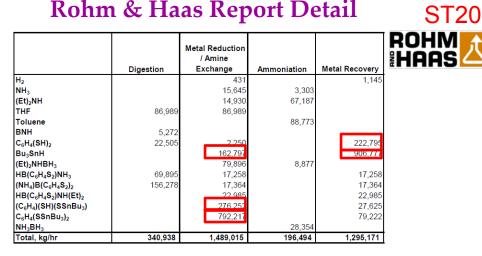
Technical Accomplishments and Progress 2009 Lessons Learned from Rohm & Haas Cost Analysis

2009-2010 Focus Area <u>Reduce Mass Flow</u>

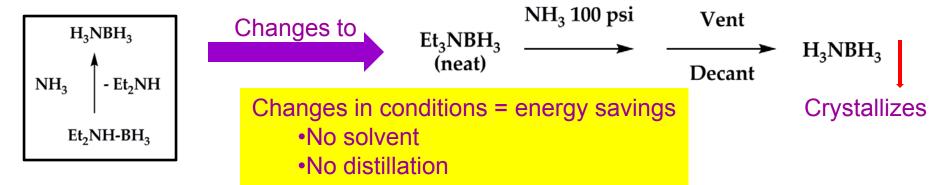

Combine Steps
Optimized digestion stoichiometries
Optimize amine exchange/ammoniation
Consider lower MW reducing agents

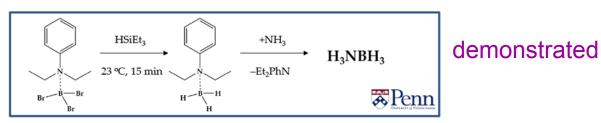
Technical Accomplishments and Progress 2009 Actions Taken based upon Rohm & Haas Cost Analysis




Combining reactors Stoichiometry Concentrations Separations Reagent Substitutions Solvent effects Reaction Times Optimal Product Product Distributions Example. Lean digestion with recycle increased overall efficiency

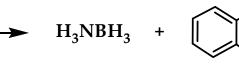
2009 Analysis by R&H indicates mass and separations are major energy costs


Nearly 90% of Utility Use Related to Separations



Technical Accomplishments and Progress 2009 New Kinetics and Separation Methodology Under Development

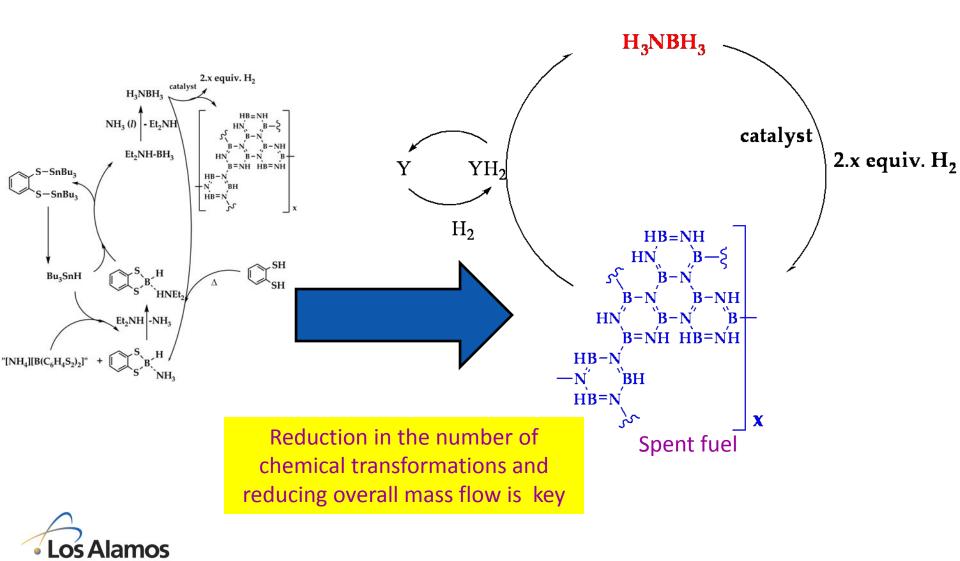
Scheme Detail


2009 Lighter hydrogen transfer agents under evaluation

<u>Calculations</u> suggest less massive main group hydrides will work

NH₂

R₂Ga-H ·



DOE Chemical Hydrogen Storage Center

ΔG (298K) -13.0 kcal/mol

2009 Ultimate Goal for LANL Regen

Proposed Future Work

- Storage
 - Prepare fuels that meet DOE targets for operability
 - Identify, test metal AB derivatives (mixed metal systems) with potential for on-board regen
 - Long term stability of fuel form
 - Temperature stability and range of liquid fuel
- Release
 - Identify, demonstrate additional non-precious metal heterogeneous catalyst with yet higher rates and with high durability,
 - Cold start up issues
 - Potential catalyst deactivation to be examined using flow reactors in unison with the Engineering Center of Excellence.
 - Liquid fuels compatibility with catalyst and longevity issues to be examined using flow reactor in unison with the Engineering Center of Excellence
 - Purity of hydrogen identification, quantification, and mitigation
- Regen
 - Improve process efficiency and reduce cost
 - Confirm capability of liquid fuel with regen
- Engineering Guided Research
 - Hydrogen purity testing of release materials
 - Flow reactor catalysis testing of catalyst kinetics, durability, extent of hydrogen release

Summary

- Engineering integration is now the major driver for the chemical storage systems under development
- Heterogeneous catalysis have been identified and proven to be effective with hydrogen release from AB
- Liquid storage options for AB fuels are major priority and have multiple paths forward
- Large numbers of new materials are now under investigation for direct rehydrogenation potential
- Regen scheme is being optimized with input from Cost analysis, with replacement of major energy intensive steps the priority
- Hydrogen gas stream purity is a priority
- As we move forward communication with the new Engineering Center of Excellence will be is developing; LANL is a partner as is PNNL

LANL Materials Comparisons and Progress; Selected Results

Metrics	2005	2006	2007	2008	2009
Grav. density (Mat. wt%)			2007 AB Mixtures	2010 Metal AB's	2010 Liquid AB 2010 Metal AB's
Vol. density (kg-H ₂ /L)					2010 Liquid AB 2015 Metal AB's
Minimum full flow rate				Platinum catalysts	NON- Platinum catalysts
Operating Temperature				70 °C	70 °C
Fuel Purity				inline filter required	inline filter required
Fuel cost					\$7-8 1 st process

Table 3.3.2 Technical Targets: On-Board Hydrogen Storage Systems					
Storage Parameter	Units	2007	2010	2015	
System Gravimetric Capacity					
Usable, specific-energy from H ₂	kWh/kg	1.5	2	3	
(net useful energy / max system mass) ^a	(kg H ₂ /kg system)	(0.045)	(0.06)	(0.09)	
System Volumetric Capacity	1				
Usable energy density from H ₂	kWh/L	1.2	1.5	2.7	
(net useful energy / max system volume)	(kg H ₂ /L system)	(0.036)	(0.045)	(0.081)	
Storage System Cost ^b Fuel cost ^c	\$/kWh net (\$/kg H ₂) \$/gge at pump	6 (200)	4 (133) 2-3	2 (67) 2-3	
Durability / Operability					
Operating ambient temperature d	۰c	-20/50 (sun)	-30/50 (sun)	-40/60 (sun)	
Min/max delivery temperature	۰C	-30/85	-40/85	-40/85	
Cycle life (1/4 tank to full) e	Cycles	500	1000	1500	
Cycle life variation ^f	% of mean (min) at % confidence	N/A	90/90	99/90	
Min delivery pressure from tank; FC = fuel cell, ICE = internal combustion engine	Atm (abs)	8FC / 10 ICE	4FC / 35 ICE	3FC / 35 ICE	
Max delivery pressure from tank ⁹	Atm (abs)	100	100	100	
Charging / Discharging Rates					
System fill time (for 5 kg)	min	10	3	2.5	
Minimum full flow rate	(g/s)/kW	0.02	0.02	0.02	
Start time to full flow (20 °C) h	5	15	5	5	
Start time to full flow (- 20 °C) h	s	30	15	15	
Transient response 10%-90% and 90% - 0% ^I	5	1.75 0.75		0.75	
Fuel Purity (H ₂ from storage) ¹	% H ₂	99.99 (dry basis) See Appendix C			
Environmental Health & Safety					
Permeation and leakage ^k	Scc/h	Meets or exceeds applicable standards			
Toxicity	-				
Safety	-				
Loss of useable H ₂ ^L	(g/h)/kg H ₂ stored	1	0.1	0.05	

