

2009 DOE Chemical Hydrogen Storage Center of Excellence

Low-Cost Precursors to Novel Hydrogen Storage Materials

Project ID# ST_20_Linehan

S. Linehan, N. Allen, R. Butterick, A. Chin, L. Klawiter, F. Lipiecki, S. Nadeau, S. November Rohm and Haas Company May 21, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Start: March 1, 2005
- End: March 31, 2010
- Percent complete: 80 %

Barriers

- System cost
- Regeneration processes
 - Cost
 - Energy efficiency
 - Environmental impacts

Budget			
	Total Funding	FY08 Actual	FY09 Budget*
DOE	\$3,438K	\$642K	\$1,300K
ROH	\$1,524K	\$275K	\$557K
Phase 2 DOE:ROH Split 70:30 Does not include DOE funding to INL (\$700K) in Phase 2			

Objectives/Relevance

- Identify cost and energy efficient pathways to "first fill" and regeneration for ammonia borane (AB) and other borane materials (Phase 2)
 - Continue experimentation leading to selection of single pathway for low-cost NaBH₄ and further AB process technology development
 - Guide selection of a top AB regeneration scheme for experimental studies on most promising alternatives
- Low cost AB (and other borane-based materials) requires low cost NaBH₄ for initial system fill
 - NaBH₄ is dominant component to AB costs
 - Lower cost NaBH₄ technologies needed
- Low cost NaBH₄ also essential to Metal Hydride Center success

Approach/Milestones – AB Cost and Energy Efficiency Estimation

- Methodology developed for determining energy efficiency and delivered costs
- Results reviewed with TIAX; feedback incorporated
- Baseline cost estimates developed February 2009 (1st fill AB and AB regen milestone reports)

Approach/Milestones – Low Cost NaBH4 for 1st Fill AB

Identify Leading Pathways	Determine Feasibility of Leading Pathways	Detail Performance to Select Single Pathway	Develop Single Pathway
 Develop screening and evaluation criteria specific to NaBH₄ regeneration cycles Review prior technical and patent literature Select leading NaBH₄ regeneration pathways based on theoretical energy efficiencies from reaction energetics and relevant metrics 	 Demonstrate key chemical and process steps in laboratory studies Develop flow sheets and preliminary energy requirements and cost estimates for leading systems Sept 2007 Go/No Go Decision for NaBH₄ as a storage material 	 Establish complete material balance to determine intermediates and purification requirements Demonstrate all chemical and process steps Investigate scalability July 2009 milestone 	 Develop single NaBH₄ process Update economics

5

Phase 2

1st Fill AB: Leading Chemistries Identified

Metathesis of ammonium salt and MBH₄ in organic solvents $nNaBH_4 + (NH_4)_nX \rightarrow nNH_3BH_3 + Na_nX + nH_2$ Current analysis Purdue: Ramachandran et al, Inorg. Chem, 2007, 46, 7810-7817 NaBH₄ + $\frac{1}{2}$ (NH₄)₂SO₄ $\xrightarrow{\text{THF}}$ NH₃BH₃ + $\frac{1}{2}$ Na₂SO₄ + H₂ (>95%) NaBH₄ + (NH₄)HCO₂ $\xrightarrow{\text{dioxane}}$ NH₃BH₃ + NaHCO₂ + H₂ (>95%) **PNNL:** Heldebrant et al., *Energy & Envir. Science*, 2008, 1, 156-16 $NH_4CI + NaBH_4 \xrightarrow{NH_3} NH_4BH_4 \xrightarrow{THF} NH_3BH_3$ (up to 99% yield) Base displacement of borane complexes with ammonia $L-BH_3 + NH_3 \rightarrow NH_3BH_3 + L$ Ohio State: Shore et al, WO2007/120511 A2

1st Fill AB: Separation Requirements Determine Feasibility

1st Fill AB Cost: NaBH₄ is Dominant Component

.

•

AB plant capacity = 10,000 MTA Metathesis – NH₄ formate / dioxane

- Cost = \$9/kg AB
 - ~80% from raw materials
 - NaBH₄ at \$5/kg accounts for 95% of RMs; 75% overall
- AB cost would be \$55-85/kg at current \$40-\$60/kg NaBH₄
 - Low cost NaBH₄ technologies under development
 - 2007 study indicates \$1-2/kg NaBH₄ at high volume production in regen plants
 - Use \$5/kg NaBH₄ as initial estimate for 1st fill AB scales

DOE Storage System Targets Require Low-Cost H₂ Storage Media

Two R&D Approaches to Low Cost NaBH₄ Under Development

Pathway	Chemistry
Schlesinger (current)	4NaH + B(OCH ₃) ₃ \rightarrow NaBH ₄ + 3NaOCH ₃ - 25% utilization of Na metal
Metal Reduction	1-step: NaBO ₂ + 2x/y M + 2H ₂ \rightarrow NaBH ₄ + 2/y M _x O _y 2-step: 2x/y M + 2H ₂ \rightarrow 2x/y MH _{2y/x} NaBO ₂ + 2x/y MH _{2y/x} \rightarrow NaBH ₄ + 2/y M _x O _y - lower-cost metal and lower usage vs. Na - reactive milling
Carbothermal Reduction	NaBO ₂ + 2CH ₄ \rightarrow NaBH ₄ + 2CO + 2H ₂ - methane instead of metal reductant - syn gas (CO/H ₂) byproduct - high temperature to convert B-O to B-H

Objective: Select single pathway for low-cost NaBH₄ in 3Q2009

Chemical Pathway Established for Metal Reduction

Focus on 2-step process via metal hydride intermediate

- Offers advantage of higher yields and lower reaction severities

Metal Reduction – Key Chemistry for Reactive Milling Confirmed

3 NaBO ₂ + 4 AIH	$J_3 \cdot L \rightarrow 3 \text{ NaBH}$	$_{4}$ + 2 $AI_{2}O_{3}$ + 4 L
-----------------------------	--	--------------------------------

Chemistry (Ball Milling)	Borate source	 NaBO₂: 89% NaBH₄, 5% BH Na₂B₄O₇ + NaX: 62% NaBH₄ 	
	Alane adduct	 L¹: 89% NaBH₄, 5% BH L²: 1% NaBH₄, 29% BH L³: 2% NaBH₄ 	
	Stoichiometry	 1.1 eq. AlH₃-L: 60% NaBH₄, 1% BH 2.0 eq. AlH₃-L: 77% NaBH₄, 1% BH 	
Alternative Approaches	Slurry-based systems	 Borate + AlH₃-L → 29% NaBH₄ + 60% BH 89% boron conversion 	

Results based on ¹¹B NMR analysis BH = borane intermediate

Reactive Milling Modeling Guides Lab Studies, Defines Scalable Process

Normal and Tangential Force Distribution

Maximum Force per Collision [N]

- **Discrete-element modeling** provides fundamental understanding of mill motions and particle collisions
- Obtain insight into mill operation, scaleup, and design
- Model also used to help guide lab studies

Carbothermal Reduction of Borate – Prior Results Still to be Validated

Established

- Collaboration with INL
- Prior INL studies: nearly 50% NaBH₄ yields for NaBO₂ reduction by reducing gases in plasma arc
- High reaction temperatures (>1200°C) dictated by thermodynamics
- Plasma arc process technology commercially viable

To Be Defined

- Formation of intermediates and byproducts and required separation
- Reaction quench and heat integration needs
- Best mode for carbothermal reaction (temp sensitivity)
- Scaleup options for commercial high temperature operations


```
NaBO_2 + 2CH_4 \rightarrow NaBH_4 + 2CO + 2H_2
```

- Experimental NaBH₄ formation remains elusive
 - NaBH₄ has not been produced but some water-reactive material has (possibly boranes or Na/NaH)
 - Equipment issues exact repetition of prior positive NaBH₄ studies difficult
 - Analytical challenges
 - Working closely to assist analysis and understand various aspects of previous results

LANL AB Regen: Heats of Reaction Favorable for High Efficiency Process

		∆ H,rxn, 25C kcal/mol AB
Reactor 1: ✓ Digestion	(1a) BNH + 1.5 $C_6H_4(SH)_2 \rightarrow 0.5 HB(C_6H_4S_2) \cdot NH_3 + 0.5 (NH_4)B(C_6H_4S_2)_2$	5.7
Side Reactions	: (1b) $C_6H_4(SH)_2 + HB(C_6H_4S_2)\cdot NH_3 \rightarrow (NH_4)B(C_6H_4S_2)_2 + H_2$	20.9
Reactor 2:		
✓ Reduction:	(2a) 0.5 (NH₄)B(C₅H₄S₂)₂ + 0.5 Bu₃SnH → 0.5 HB(C₅H₄S₂)·NH₃ + 0.5 (C₅H₄)(SH)(SSnB	u ₃) -15.7
✓ Amine Exchange	ge: (2b) $HB(C_6H_4S_2)\cdot NH_3 + Et_2NH \rightarrow HB(C_6H_4S_2)\cdot NHEt_2 + NH_3 (g)$	1.4
✓ Reduction:	(2c) $HB(C_6H_4S_2)\cdot NHEt_2 + 2 Bu_3SnH \rightarrow Et_2NHBH_3 + C_6H_4(SSnBu_3)_2$	6.5
Net:	(2d) 0.5 HB(C ₆ H ₄ S ₂)·NH ₃ + 0.5 (NH ₄)B(C ₆ H ₄ S ₂) ₂ + 2.5 Bu ₃ SnH + Et ₂ NH → Et ₂ NHBH ₃ + NH ₃ + 0.5 (C ₆ H ₄)(SH)(SSnBu ₃) + C ₆ H ₄ (SSnBu ₃) ₂	-7.8
Side Reactions	: (2e) $C_{2}H_{2}(SH)_{2} + Bu_{2}SnH \rightarrow C_{2}H_{2}(SH)(SSnBu_{2}) + H_{2}$	-10.5
	(2f) $C_6H_4(SH)(SSnBu_3) + Bu_3SnH \rightarrow C_6H_4(SSnBu_3)_2 + H_2$	- 4.0
Reactor 3 ✓ Ammoniation:	(3) $Et_2NHBH_3 + NH_3$ (I) $\leftrightarrows H_3NBH_3 + Et_2NH$	-4.1
Reactor 4:		
Metal Recycle:	(4a) 0.5 C₅H₄(SH)(SSnBu₃) + 0.5 H₂ → 0.5 C₅H₄(SH)₂ + 0.5 Bu₃SnH	5.3
	(4b) $C_6H_4(SSnBu_3)_2 + 2H_2 \rightarrow C_6H_4(SH)_2 + 2Bu_3SnH$	14.5
Overall ΔH_{rxn} for	or target reactions (no side reactions) and no heat recovery of Rxr 2 and 4 produ = 25 kcal/mol AB = 21 MJ/kg H ₂ (potential for very high energy efficiency)	ıct

LANL Spent AB Regeneration Route: Conceptual Process Flowsheet Developed

Plant Design Basis

- 225,000 MTA ammonia borane production
 - Equivalent to 100 mt/day H₂ @ 90% on-stream and 2.5 mol H₂ release per mol AB
 - Negligible losses during fuel shipping and storage
 - AB not used to generate heat for on-board H₂ release
 - 250 mt/day H₂ production as sensitivity
- Spent AB fuel delivered to plant and regenerated AB bulk powder leaves plant
 - Delivery costs to auto not included since design of AB fuel is not yet defined

•

Capital Recovery and Utilities Dominate LANL AB Regen Cost

AB Production, TPD H ₂ equivalent	100	250
Baseline AB Regen Plant Cost, \$/kg H ₂	7.9	7.0
Total Investment, \$M	520	1000
Capital	460	850
First Fill Chemicals (dominated by tin)	60	150

Capital recovery plus utilities account for 75% of regen cost

 necessitated by high mass flows and separation requirements

• Los Alamos

Nearly 60% of Capital Cost and 90% of Utility Cost Related to Separations

100 mt/day H₂ plant

Opportunities to Lower Cost/Energy Usage

- Reduce mass flow
- Minimize refrigeration use alternative reagents to improve thermal stability
- Simplify separation scheme eliminate unessential separations
- Reduce separation severity
- Consider alternatives to high energy distillation (e.g., crystallization)
- Improve heat integration

Collaboration – Essential for Sound Process Development and Analysis Work

- AB regeneration processes
 - LANL, PNNL, UPenn: Experimental results input
 - U Alabama: Thermochemical calculations
 - Rohm and Haas guides Center development work
- First fill AB process analysis
 - PNNL: Experimental results input
- Low cost NaBH₄ for 1st fill AB
 - INL (sub-contractor): Carbothermal studies

Future Work

- AB regeneration
 - Investigate options to reduce cost of LANL AB regen scheme
 - Reduce mass flow
 - Utilize less energy intensive separation schemes
 - Conduct baseline cost estimate for PNNL, hybrid AB regen routes
- First fill AB
 - Conduct baseline cost estimate for PNNL and Shore schemes:
 - $NaBH_4 + NH_4CI \rightarrow NH_4BH_4 + NaCI \rightarrow NH_3BH_3 + NaCI + H_2$
 - $L-BH_3 + NH_3 \rightarrow NH_3BH_3 + L$
 - Refine cost estimates with updated NaBH₄ cost

Future Work (continued)

- Low cost NaBH₄ for 1st fill AB: continue R&D to identify high-yield, low-cost scalable process
 - Metal reduction: select best scalable process
 - Demonstrate alane formation
 - Define chemistry and process window
 - Identify byproduct formation, establish material balance
 - Develop separation and purification needs
 - Detail conceptual process and costs
 - Carbothermal: progress experimental program to validate prior positive results
 - Define process window, quench requirements, separation/purification needs
 - Detail conceptual process and costs
 - Select single top pathway: metal reduction or carbothermal
 - Continue R&D to define and develop process
 - Confirm scalability
 - Update flowsheets and economics
 - Develop life cycle impacts

Summary

- AB First Fill
 - Low cost NaBH₄ is dominant factor for producing 1st fill AB at cost required to meet 2010/2015 DOE hydrogen storage system cost targets.
 - At \$5/kg NaBH₄ price using new technology, the metathesis reaction of NaBH₄ with NH₄ formate developed by Purdue University can produce AB on a commercial scale at about \$9/kg, which may meet DOE targets.
 - AB synthesis paths differ in separation requirements and could impact AB purity and performance.
 - PNNL and Shore routes are undergoing investigation.
- Low-Cost NaBH₄ for 1st Fill AB
 - Alane reduction of borate affords high-purity $NaBH_4$ with high yields.
 - Chemical pathway has been elucidated: good material balance with no intractable byproducts observed; points to recyclable process.
 - Carbothermal reduction of borate to borohydride remains elusive.
- AB Regeneration
 - Baseline cost estimate to regenerate AB using the thiol-based LANL route:
 \$7 8/kg H₂ (exit regen plant) for 100 250 MTD H₂ equivalent.
 - Capital recovery and utilities are dominant components of cost, due to high volume process flows and their separation requirements.
 - Opportunities are identified to lower processing and separation costs.

Supplemental Slides

Development of Low-Cost NaBH₄ Important at All Production Scales

Cost ranges reflect sensitivities in yield, production volume, capital investment, utility costs, byproduct values, and labor costs

¹ Linehan et al, 2008 AMR : Carbothermal reduction = \$2-7/kg H₂, metal reduction = \$6-12/kg H₂