Ammonia borane regeneration and market analysis of hydrogen storage materials

David Schubert, Jonathan Owen, Duane Wilson, Larry Harrower

U.S. Borax Inc. May 21, 2009

Project ID # ST_21_Schubert

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: Oct 1, 2008
- End date: Sep 30, 2010
- Percent complete: 25%

Budget

- Total project funding
 - DOE: \$600K
 - Contractor share: \$347K
- Funding received in FY09: \$75K
- Funding for FY10: \$225K

Barriers

- Cost
- Efficiency
- System Life Cycle Assessment
- Regeneration

Partners

- Pacific Northwest National Lab
- Los Alamos National Lab
- Rohm & Haas Co.

Relevance

Objectives

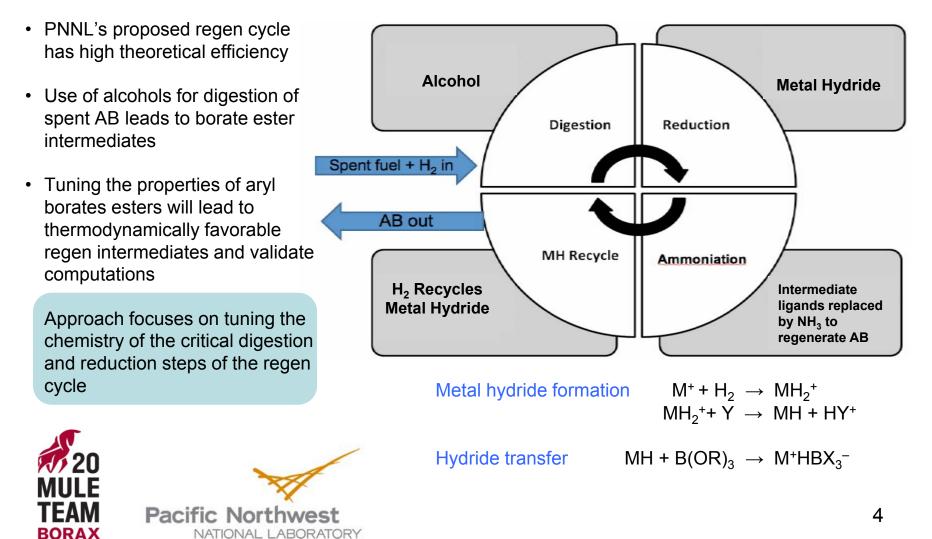
New Project

- <u>Regeneration</u>: Need to maximize efficiency of off-board regeneration of ammonia borane fuel
 - Need recyclable thermodynamically favorable intermediates
 - Collaborate with PNNL and other Center partners to maximize efficiency of spent fuel regeneration
 - Tune chemistry of borate esters as hydride acceptors in PNNL's cycle
- <u>Boron Resources</u>: Understanding of global supplies of boron ore resources required for hydrogen storage
 - Develop better understanding of global supplies of boron ore resources required for hydrogen storage
 - In addition to boron, resource model developed will be applicable to other materials of interest for hydrogen storage, e.g., Li, Mg

Impact

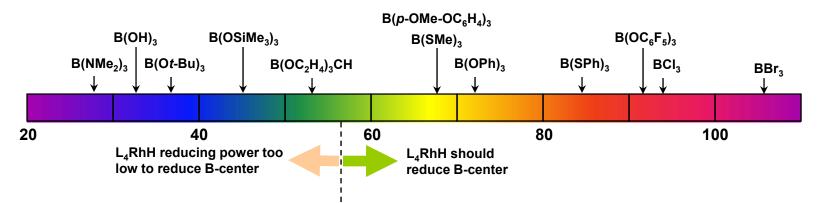
- Results of collaboration expected to enable practical regeneration of ammonia borane fuel to meet needs of large automotive fleet
- Borate resource analysis is critically important to feasibility of chemical hydrogen storage as well as many proposed metal hydride systems

Milestones

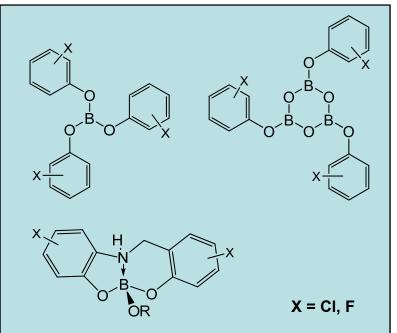

- Q109-Q309: Synthesis of selected set of borate esters and borate resource analysis
- Q309-forward: Digestion studies, regen cycle fine tuning and market impact analyses

Deliverables

- Analysis of global borate reserves and impacts of hydrogen storage technology deployment on market parameters, including competing uses and borate prices
- Synthesis of supply to PNNL of selected borate esters compounds and spent fuel digestion studies


Technical Approach

Regeneration of ammonia borane (AB) spent fuel


Technical Approach

Absolute hydride affinities of BX₃ compounds based on gas phase calculations

- AB regeneration pathway requires spent fuel digestion intermediate having sufficient hydride affinity for reduction by metal hydride
- U.S. Borax is undertaking synthesis of a large set of borate esters of several types to be supplied to PNNL for experimental validation of theory and regen process
- Approach will impact likelihood of success of PNNL's regen system and validate theory

Approach will validate theory and practical process

Approach: Borate Reserves and Chemical Hydrogen Storage

Establish global reserve estimates

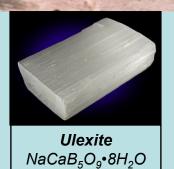
- Review and analyze publicly available information sources to quantify borate resources
- Other published numbers have poorly attributed data sources
 - Our work is aimed at establishing most reliable publicly available reserves data
- Published estimates from U.S. Geological Survey are much lower than other reports
 - 80 Mmt B_2O_3 globally compared with approximately 1,000 Mmt B_2O_3 .
 - Significantly underestimates both U.S. and Turkish reserves
- Anticipated consumption of reserves from competing uses through projected initial fill timeframe (2009
 - \rightarrow 2050) should be included in estimates

Model for Boron Demand

360 million FCVs
57.5 miles/kg H₂*
400 mile range per tank
12,000 miles per year per vehicle*
1 month supply in infrastructure
15% H₂ storage in AB
No losses (100% recycle)

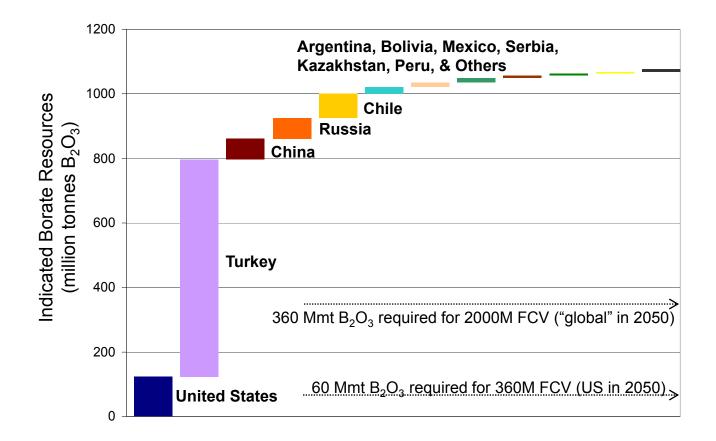
Sources:

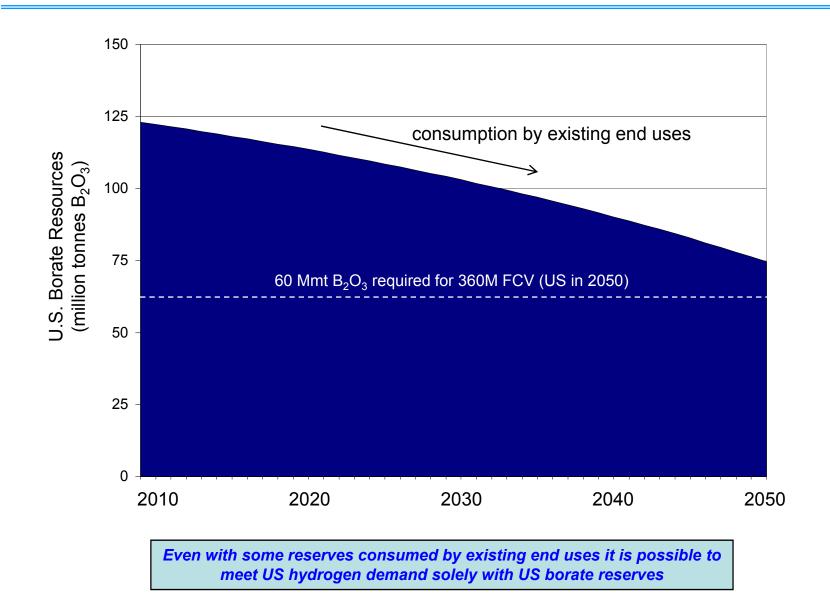
Borates: A Handbook of Deposits, Processing, Properties, and Use D.E Garret, Academic Press The Economics of Boron – 11th Edition Roskill


U.S. Borax Inc. borate mine at Boron, California

Important borate minerals

Tincal $Na_2B_4O_7 \cdot 10H_2O$




Colemanite $Ca_2B_5O_8 \cdot 5H_2O$

Progress: Borate Reserves and Chemical Hydrogen Storage

Present day known global borate resources are sufficient for U.S. and global hydrogen storage needs

Progress: Borate Reserves and Chemical Hydrogen Storage

Accomplishments

Resource Analysis

- Review and analysis of published data sources on known borate world deposits completed
- Initial assessment of global borate resources completed (>1 billion B₂O₃ tonnes available)
- Assessment of projected depletion of borate reserves by non-hydrogen storage demands completed
- Estimate of global borate ore reserves are determined to be sufficient for hydrogen storage needs, as well as and other projected industrial demands

Regen Studies

- New laboratory program initiated
- General laboratory methods for borate ester synthesis developed
- Initial set of borate esters for regen testing supplied to PNNL

Examples

Orthoborate esters:

- Tri-(2-halophenyl)borate
- Tri-(3,5-dihalophenyl)borate
- Tri-(4-halophenyl)borate
- Tri-(3,4,5-trihalophenyl)borate
- Analogous boroxine esters
- Chelated borate esters in progress

Collaborations

Pacific Northwest National Lab (PNNL)

U.S. Borax is working closely with PNNL

- Synthetic work on borate esters is guided by computations done at PNNL
- Spectroscopy and hydride transfer experiments using compounds supplied by U.S. Borax are being carried out at PNNL

Los Alamos National Lab (LANL)

LANL is coordinating efforts on AB regeneration. U.S. Borax participates in regular conference calls and technical discussions organized by LANL

Rohm & Haas Company

Boron resource and market data generated by this project will be used in on-going cost, efficiency, and life cycle analyses conducted by Rohm & Haas

This is a highly collaborative project integrated into the overall Chemical Hydrogen Storage program

Future Work

Resource Analysis

- Further refinement of boron global reserve data
- Analysis of important questions regarding industry impacts of hydrogen storage technologies and market parameters, including:
 - Impacts on competing uses
 - Impacts on borate prices

Regen Studies

- Synthesis of larger set of borate esters of several categories for regen studies at PNNL
- Spent fuel digestion studies
- Regen cycle validation in collaboration with PNNL

Other Activities

- Analytical Support
- Safety Analysis and Consultation

Project Summary

- **Relevance:** (1) Collaborate with partners to optimize practical regeneration pathways for ammonia borane (AB) hydrogen storage fuel
 - (2) Quantify boron raw material resources required for hydrogen storage
- **Approach:** (1) Synthesis of large set of borate esters of several types to serve as prototypes AB regen intermediates to validate theory. Done in collaboration with PNNL
- **Progress:** (1) U.S. Borax has begun supplying borate esters to PNNL for testing
 - (2) First order estimation of U.S. and global borate reserves completed, taking into account consumption by competing applications through initial fill timeframe

Technology Collaborations: PNNL, LANL, and Rohm & Haas Co.

Proposed Future Research:

- (1) Synthesis of larger set of borate esters for regen studies at PNNL, spent fuel digestion studies, and regen cycle validation
- (2) Further refinement of boron reserve data and analysis of impacts of hydrogen storage on competing uses and prices

David Schubert, Ph.D. 303-713-5226 dave.schubert@borax.com

U.S. Borax Inc. Greenwood Village, Colorado

