

A Biomimetic Approach to Metal-Organic Frameworks with High H₂ Uptake

Hong-Cai (Joe) Zhou Texas A&M University May 21, 2009

ST_23_Zhou

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 7/1/2007
- Project end date: 6/30/2012
- Percent complete: 38%

Barriers

≻H₂ uptake at room temperature is low despite high uptake at 77 K

Current heat of adsorption for common sorbents is around 5 kJ/mol

>To reach high storage capacity at ambient temperature, ΔH needs to be in the range of 15 to 30 kJ/mol

and surface area needs to be around 5000 to 9000 m²/g

Budget

 Total project funding (DOE: \$1,342,819; Contractor: \$771,856)

- > FY07 \$122,000
- ≻ FY08 \$0
- ≻ FY09 \$525,000

Partners

- ➢ Air Product
- > NREL
- > NIST
- ➤ KRICT, Korea
- U of Michigan
- Universität Göttingen, Germany
- UC Santa Barbara

Framework Catenation, High surface area, and Unsaturated Metal Centers for High H₂-Uptake

Difficulties:

- Dihydrogen, as simple as two protons and two electrons, holds its electrons tightly and is difficult to polarize
- The H₂ molecule is also a poor acid and a weak base and the energy levels of its frontier orbitals prevent the direct interaction between dihydrogen and other non-metals
- Transition metals can interact with H₂ molecule but Kubastype binding may be too strong.

Strategy:

Catenation can lead to higher hydrogen uptake in MOFs

Constructing MOFs containing mesocavities with microwindows may serve as a general approach towards stable MOFs with higher and higher surface areas

MOFs with multiple open metal sites per metal atom may improve hydrogen sorption affinity

The Effect of Framework Catenation on Hydrogen Uptake in Metal-Organic Frameworks

leading to much higher H₂ uptake in

the isomer with catenation.

P/P

ST23

4

P / Torr

INS, Heats of H₂-adsorption, and H₂-adsorption of PCN-6 and PCN-6'

The expected usable capacity of PCN-6 is as high as 75 mg/g (or 41.9 g/L) at 77 K
Interpenetrated PCN-6: 7.2 (EUC: 5.2) wt % H₂ at 77 K, 50 bar and 0.93 wt % at 298 K, 50 bar

Non-interpenetrated PCN-6' 4.2 (EUC: 2.4) wt % H₂ at 77 K, 50 bar and 0.40 wt % at 298 K, 50 bar

PCN-6' Acknowledgements: Jong-San Chang, KRICT, Paul Forster, UNLV and Juergen Eckert, UC Santa Barbara ST23 5

Porous Metal-Organic Frameworks Containing a Large Number of Aromatic Rings

Hydrogen affinity of the ligand

10

20

30

P (bar)

40

50

6

n

Interpenetrated Metal-Organic Frameworks with Entatic Metal Centers

H₂ Affinities of PCN-9 with Different Entatic Metal Centers

	BET surface area (m²/g)	Langmuir Surface area (m²/g)	Pore volume (cm ³ /g)	H ₂ uptake (wt %, at 77K, 760 Torr)	Isosteric heats of adsorption (Q_{st}) at low H ₂ coverage (kJ/mol)
PCN-9 (Co)	1064	1355	0.51	1.53	10.1
PCN-9 (Fe)	682	848	0.33	1.06	6.4
PCN-9 (Mn)	836	1057	0.41	1.26	8.7

The implementation of open Co centers into porous MOFs may be a promising way to enhance hydrogen adsorption enthalpies.

Fe (II) and Mn (II) oxidation under solvothermal conditions?

ST23

Stabilization of Metal-Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows

PCN-61

PCN-66

➤The stability of these MOFs was strengthened by the in-situ formation of coordination cuboctahedra building units, which limit the open window sizes of the mesocavities

The surface area of the activated MOF has been increased remarkably by ligand extension, presumably due to the increased size of the mesocavities
The pore walls of the mesocavities can be modified by post-synthetic reactions

N₂ Adsorption Properties

Heats of H₂-adsorption and H₂-adsorption of PCN-61

Acknowledgements: Alan C. Cooper, Air Products and Chemicals

N₂ Adsorption Study of PCN-103 Shows the Highest Surface Area

	MOF-5	IRMOF-20	MOF-177	MIL-101	UMCM-1	UMCM-2	PCN-103
BET (m ² /g)	3800	4024	4746	4100	4160	5200	7200
Langmuir (m²/g)	4400	4590	5640	5900	6500	6060	9000
Pore Volume	0.28	1.53		1.9			3.26
(mL/g)							

H₂ Storage MOFs with Multiple Open Metal Sites

V³⁺ can be replaced by Ti⁴⁺, Cr²⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Sc³⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺..... Confirmed by calculation (Hansong Cheng, Air Products).

Selected Organic Ligands with Secondary Functional Groups

Selected MOFs with Secondary Functional Groups

PCN-100

PCN-101

Post-synthetic Modification of MOFs

N₂ adsorption of PCN-101 reacted with different bases

H₂ adsorption of PCN-101 reacted with different bases

Accomplishments

Demonstrated through experiments that :

- Interpenetrated MOFs have high hydrogen affinity and uptake
- > MOFs with nanoscopic cages posses high hydrogen uptake
- MOFs containing UMCs or entatic metal centers (just like the Fe centers in hemoglobin) tend to have high hydrogen affinity. Among Mn, Fe, and Co, Co has the highest hydrogen affinity
- MOFs containing mesocavities with microwindows tend to have high surface area and stability
- A MOF with a Langmuir surface area of 9000 m²/g, which is 50% higher than that of MOF-177, has been obtained

Milestones Reached

FY08

- Synthesized thirty new ligands containing hierarchical donor atoms with the primary donors supporting the metal-organic framework and the secondary ones anchoring hydrogenphilic metal atoms
- Optimized the open channel size and openmetal-center alignment in metal-organic frameworks for hydrogen adsorption based on van der Waals interaction
- MOFs with surface area more than 6000 m²/g have been obtained

Future Plan

FY09

- Further enhancement of H₂-MOF interaction by introducing a higher density of coordinatively unsaturated metal centers (heat of adsorption 15 kJ/mol)
- Improvement of H₂ uptake at temperatures higher than 77 K by ligand and MOF design.
- Increase MOF thermal stability while maintaining its porosity
- Preparation of MOFs with high surface area and optimized cage size (5000 m²/g)
- Improve the usable storage capacity of MOFs

FY10

- Show that hydrogen-philic metal-incorporation improves the heat of hydrogenadsorption. Achieve a heat of hydrogen-adsorption significantly higher than those of traditional adsorptive materials
- Achieve the DOE 2010 volumetric and gravimetric goals of 0.045 kg H_2/L and 6 wt%, respectively at conditions approaching ambient temperature and applicable pressures
- The Go/No-Go decision (3rd Quarter) will be made primarily on the degree of improvements achieved

Summary Table

Comparison of Hydrogen Uptakes of PCNs-6,6',9,14,61,66							
Material	∆H _{ads} (kJ/mol)	H ₂ Adsorption					
		Gravimetric H ₂ uptake (Wt%)	Volumetric H ₂ uptake (g/L)	Т (К)	P (bar)		
PCN-6	6.2~4.5	7.2 1.90 0.92	40.2 10.6 5.14	77 77 298	50 1.0 50		
PCN-6'	6.0~3.9	4.2 1.62 0.40	11.8 4.73 1.12	77 77 298	50 1 50		
(Co) PCN-9 (Fe) (Mn)	10.1 6.4 8.7	1.53 1.06 1.26	14.1 9.60 11.3	77 77 77	1 1 1		
PCN-14	5.9-5.0	2.70 4.42	22.5 36.6	77 77	1 45		
PCN-61	9.3~4.5	4.28 2.11 0.65	14.8 7.32 2.25	77 77 298	16 1 109		
PCN-66	7.2~4.5	1.69	4.26	77	1		