

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Hydrogen Storage through Nanostructured Polymeric Materials

Di-Jia Liu¹, Shengwen Yuan¹, Brian Dorney¹, Scott Kirklin¹, Suhas Niyogi¹, Shengqian Ma¹, Ricky Regalbuto¹, Peter Zapol¹, Jiangbin Xia², Zhuo Wang² & Luping Yu²

> ¹Argonne National Laboratory ²The University of Chicago

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, Arlington VA

May 21, 2009

Project ID ST_27_Liu

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start: July 2007
Project end: June 2012
% complete: 40%

Budget

- Total project funding: \$2 Million
 - DOE share: \$1.88 Million
 - Contractor share: \$120 K
- Funding received in FY08
 - \$516 K (operation)
 - \$100 K (equipment)
- Funding for FY09
 - \$800 K

Barriers

- Barriers addressed
 - A. System Weight and Volume
 - B. System cost
 - C. Efficiency
 - D. Durability/Operability

Partners

- Interactions/collaborations
 - Argonne National Laboratory (Lead)
 - U of Chicago (Subcontractor)
 - HSCoE Members
 - U of N. Carolina (¹H NMR)
 - NIST (Neutron)
 - Air Products (Sample exchange)

Objective

- To design, synthesize, and evaluate nanostructured polymeric materials (NPM) as new hydrogen storage adsorbents for transportation applications
- To support polymer materials development with modeling/simulation and advanced structural characterizations

Potential Advantages of Polymeric H₂ Adsorbent & Their Impacts to Technology Barriers

- System Weight and Volume Polymers are light weight and can be converted to high volumetric density by engineering process such as compression, pelletizing, etc.
- System Cost Polymer can be scaled-up for industrial production with the existing infrastructure at competitive cost.
- Efficiency Polymeric adsorbent is based on physi-adsorption/desorption principle with minimum parasitic energy consumption.
- Durability/Operability Polymeric materials are stable under the temperature and humidity conditions required for hydrogen storage application.

Milestones

Month/ Year	Milestones	Status Update		
05/08	Complete the surface property and hydrogen storage capacity measurement of the benchmark materials	Completed . Several published materials including MOF and polymers were duplicated and tested.		
08/08	Initiate theoretical simulation of the interactions between hydrogen and model polymer systems	Completed . Preliminary modeling on conjugated polymer and metal doped systems were completed at Argonne.		
08/08	Complete design and synthesize two or more new porous polymer materials with targeted hydrogen uptake capacity of 3% at 77 K and 1% at 298 K	Completed . Three classes of polymers with over 50 different structures and synthesis schemes were prepared and characterized. H_2 updates of 5.1% at 77K and 0.5% at RT were achieved, a major improvement over FY08 results.		
05/09	Complete surface area and hydrogen uptake measurements for the first batch of metal-doped porous polymers	60% completed . BET, H_2 uptake and ΔH_{ads} studies of the representative samples are completed. Measurement is underway for other samples		
08/09	Complete quantum chemical study at MP2/DFT level of hydrogen adsorption on polymer model with transition metal sites	50% completed . The modeling on doped metal system is finished. Work on synthesized system will start soon.		
09/09	Complete the improvement for the new polymers to reach H ₂ adsorption capacity of 1.5 wt.% at the ambient temperature & 100 bars	20% completed . Focus is now on polymers with variable pore size, metal and other non-C element incorporation. Other modification methods are under evaluation.		

We significantly expanded synthesis effort leading to > 50 new polymers produced with nearly doubled surface area and H_2 storage capacity over last AMR report!

Approach

New Polymer	Measurement &	Modeling &
Exploration	Optimization	Characterization
(UofC/ANL)	(ANL)	(ANL/HSCoE)
 New polymer synthesis through rational design at molecular level Molecular structure characterization 	 H₂ storage capacity measurement Surface structure characterization Synthesis method improvement 	 H₂-polymer interaction study via <i>ab initio</i>, DFTB & MD methods Advanced characterization through NMR, neutron, x- ray, etc.

- Preparing high surface area & narrow/adjustable pore size polymers through rational design and synthesis
- Incorporate "metallic" feature into polymer through conductive backbone or metal doping
- Improve polymer-H₂ interaction by incorporating functional groups with hetero (non-C) elements
- Develop fundamental understanding through modeling and advanced characterization

<u>An example of ANL/UofC polymer with conductive</u> <u>backbone incorporated with different elements</u>

Progress Update – Porous Polymers Prepared from Aromatic Monomers

- A variety of monomers and synthesis methods were used to fine-tune the surface area and porosity, including contorted monomers, Friedel-Crafts reaction, etc.
- Over 20 porous polymers with different 3-D structures were prepared with simple aromatic building blocks.
- Studies on correlation between surface properties & H₂ adsorption capacity/energy is underway.

3-D structures of selected aromatic polymers prepared at Argonne and U of Chicago

High surface area (1000 M²/g ~ 1800 M²/g) & narrow pore size (6Å to 10Å) were achieved!

Progress Update – Design, Synthesis & Surface Properties of Porous Polymers from Aromatic Monomers

S. Yuan, S. Kirklin, B. Dornev, D.-J. Liu and L. Yu. Macromolecules (2009), 42 (5), 1554-1559

Majority of polymers showed narrow pore size distribution following our design principle. Systematically controlling pore dimension for better H₂ trapping is underway.

Progress Update – H₂ Storage Capacity Measurements

*Solid symbol – adsorption: Hollow symbol – desorption

Adsorption reaches saturation at relatively high equilibrium pressure. Desorption is completely reversible down to 2 bar.

Progress Update – Isosteric Heat of Adsorption Derived from Experiment & Theory: A Case Study

Unit Cell

ΔH_{ads} from theory

# H ₂ /unit cell	Gr. uptake (%)	<i>∆H_{ads}</i> (kJ/mol)
2	0.4	6.77
11	2.2	6.53
21	4.2	5.29

DFT calculations (PW91)

Experimentally determined ∠H_{ads} demonstrated dependence on H₂ coverage.
 DFT calculation correctly predicted the same trend.

Progress Update – Theoretical Investigation of H₂-Polymer Interaction

- Optimized 3-D structure through DFT duplicated the experimental pore size.
- RDF calculation revealed the interatomic distance changes between H₂ & adsorbent.
- Further study will include the prediction of H₂ packing limit.

Progress Update – Porous Polymers Containing Transition Metals

- To promote the orbital interaction between H_2 and adsorbent, transition metals were atomically dispersed into nanoporous space within the polymers.
- Fifteen samples were designed and prepared containing transition metals (M = Co, Ni. Fe. Cu. etc).
- Metals were incorporated either through post-doping or direct synthesis.

Anchoring site

Adding metal through post-doping

Adding metal through synthesis

Progress Update – Porous Polymers Containing Transition Metals

- Post-doping: building ligation site on polymer followed by metal addition
- Direct synthesis: Incorporating metal into polymer through cross-linking of organometallic monomers

New cross-linking chemistry of metal-containing monomers resulted in significant enhancement in surface area! Improvement of synthesis is on-going.

Progress Update – H₂ Uptake Isotherm & Isosteric Heat of Adsorption Measurements for Metal-containing polymer

Decreasing heat of adsorption with the increase of storage capacity suggests additional H_2 are spread to the weaker binding sites, possibly away from metal center.

Progress Update – Modeling Effort in Support of Metal Incorporated Polymer Development

<u>Computational modeling of strong binding of H₂ to Co in a polymer unit with</u> <u>atomically substituted cobalt</u>

- * Binding energy relative to H₂ in kJ/mol; Theory level: B3LYP/6-31G*//B3LYP/6-31G* (PW91/g4mp2large//B3LYP/6-31G*); g4mp2large is a triple-zeta basis set
- ** Both non-dissociative and dissociative adsorptions of H_2 on PBPY2 are favorable; Dissociation becomes less exothermic with the increase in number of H_2

Progress Update – Porous Polymers Prepared from Monomers with Non-C Element

- To generate "dipole" "induce dipole" and electronic interactions, non-C element substitution is used to create C-X bonds (X = N, S, B, P, O, ...) within the nanospace of polymers.
- Over 20 such porous polymers with different 3-D structures were designed and prepared.

3-D structures of selected polymers with non-C element prepared at Argonne and U of Chicago

Progress Update – Porous Polymers Prepared from Monomers with Non-C Element

Contorted core approach enables successful substitution of N, S, etc. while maintaining high surface areas and narrow pore diameters. New approaches include B-substitution.

Progress Update – Volumetric Capacity Study

Polymer compression does not cause major changes in microporosity and SSA

	Polymer Sample I		Polymer Sample II		
	Density (g/mL)	Surface Area (M²/g)	Density (g/mL)	Surface Area (M²/g)	
Before	0.208	1861	0.503	640	
After	1.44	1805	1.14	634	

Correlations between gravimetric & volumetric capacities vs. adsorbent densitv

Pelletizing polymer can significantly enhance volumetric capacity!

Collaboration

Partnership with Hydrogen Sorption Center of Excellence

- Team Argonne National Laboratory (prime) and The University of Chicago (subcontractor)
- Members of DOE HSCoE under the clusters of "Engineered Nanospace" (RC1) and "Substituted Materials" (RC2)
- Collaboration with UNC (HSCoE member) on ¹H NMR experiment
- Planned experiment with NIST (HSCoE member) on neutron study
- Sample exchanges with NREL and Air Products (HSCoE members) on measurement validation and benchmark material

Technology Transfer through HSCoE

- Valuable inputs on our adsorption apparatus test validation
- New ideas and direction, examples include B and metal doped polymers
- Collaboration opportunities in polymer characterization, examples include NMR & neutron studies
- Up-to-date information on new developments in sorption based materials

Collaboration

High pressure ¹H NMR study on ANL-UofC polymer performed by Kleinhammes/Wu (U of North Carolina)

More collaborations of H₂-polymer interaction studies by NMR & Neutron are underway!

Future Work

<u>FY09</u>

- Improve H₂-adsorbent interaction through pore size control and rational design
- Explore new synthesis methods for metal-containing polymers and to investigate the structure-heat of adsorption correlations
- Refine modeling on H₂-adsorbent interaction, provide guidance to the polymer design
- Investigate the kinetics and transient properties of hydrogen adsorption over polymers

<u>FY10</u>

- Explore new non-C element substituted polymers for higher adsorption energies and storage capacity
- Continue to collaborate with HSCoE in structural & mechanistic studies (e.g. NMR, neutron, etc.)
- Explore new polymer activation methods to enhance surface property and storage capacity

Summary

Relevance:	Developing the nanostructured porous polymers as H ₂ storage media to meet DOE performance targets for transportation applications	
Approach:	Rational design and synthesis at the molecular level supported by computational modeling and advanced characterization	
Accomplishments:	 Over 50 polymers from three different categories were prepared since last AMR with high surface areas (up to1800 m²/g) and narrow pore sizes (6Å to 10Å) achieved. 	
	 H₂ uptakes up to 5.1% at 77K and 0.5% at RT were achieved, representing significant improvement over last AMR report. 	
	 Combined \Delta H_{ads} measurement & computational modeling improved understanding on adsorption mechanism. 	
Collaboration:	Argonne (prime) and U of Chicago (sub) partnering with HSCoE, information dissemination & experimental collaboration	
Future Work:	 Continue new polymer exploration and optimization Explore the "hidden capacity" through activation approach Improve the understanding of H polymer interaction via theory 8 	
	advanced characterization	

Summary Table

H₂ storage capacities for selected ANL – U of Chicago polymers

Sample	Gr. Uptake (77K, 40 bars) (kg H ₂ /kg adsorbent+H _{2ads})	Vol. Uptake ^a (77K, 40 bars) (kg H ₂ /L adsorbent)	Gr. Uptake (RT, 70 bars) (kg H ₂ /kg adsorbent+H _{2ads})	Vol. Uptake ^a (RT, 70 bars) (kg H ₂ /L adsorbent)	BET SSA (M²/g)	Type of polymer ⁵
ANL-C1	4.0%	0.010	0.21%	0.0005	1233	С
ANL-C2	4.4%	0.009	0.35%	0.0007	1593	С
ANL-C5	5.1%	0.011	0.52%	0.0012	1863	С
UC-C10	2.8%	0.010	0.18%	0.0006	1043	С
UC-X4	3.2%	0.0085	0.45%	0.0012	971	X
UC-M12	3.6%	0.0051	0.40%	0.0006	1060	Μ

- a. Volumetric capacity is calculated based on the actual density of loose polymer powders, which ranges from 0.15 to 0.5. These capacities can be increased by x2 to x5 through compression.
- b. C = polymers contains only aromatics, X = polymers with non-C element substitutions, M = polymers incorporated with transition metals

Additional Slides

Supplemental Info – An example of our effort in controlling pore size through new synthetic approach

Experimental pore sizes (NLDFT) calculated from N2-BET measurement

Pore diameters can be varied by using different synthetic precursors and techniques

Supplemental Info – Benchmark study on H₂ storage capacity of a Cu-MOF

H₂ uptake of Cu-BTC measured with our Sievert apparatus showed the same capacity and P-dependent saturation as the published results

