Discovery of Materials with a Practical Heat of H₂ Adsorption

<u>Alan Cooper</u>, Hansong Cheng, Wade Bailey, Xianwei Sha, Garret Lau, John Zielinski, Guido Pez

Air Products and Chemicals, Inc. May 22, 2009

ST 28 Cooper

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 3/1/05
- Project end date: 2/28/10
- ~90% complete

Budget

- Total project \$3,948,220
 - DOE share \$3,158,575 (80%)
- FY08 funding \$700,000
- FY09 funding \$750,000

Barriers

- Technical Barriers- Hydrogen Storage
 - A. System Weight and Volume
 - C. Efficiency
 - P. Lack of Understanding of Hydrogen
 Physisorption and Chemisorption

Partners

- Current collaborations: Penn State, Texas A&M University
- Anticipated/other interactions: NREL, Rice University, Univ. of Michigan (coordination of computational modeling efforts)

Relevance – Project Objectives

- Development and testing of new materials with high H₂ storage density and appropriate enthalpy of hydrogen adsorption for operation of hydrogen storage systems at practical engineering pressures and temperatures:
 - This task addresses H₂ Storage Technical Barriers A (System Weight and Volume) and C (Efficiency)
 - Leverages our existing materials science and chemistry capabilities (eg. fluorine chemistry) to generate new hydrogen storage materials for testing
- Development of enabling technologies for H₂ storage materials development by HSCoE partners:
 - This task addresses H₂ Storage Technical Barrier P (Lack of Understanding of Hydrogen Physisorption and Chemisorption)
 - Accurate, predictive computational methodologies for new materials discovery and mechanistic understanding of hydrogen spillover
 - Development of unique characterization tools for accurate H₂ storage measurements
 - Measurement of hydrogen isotherms for HSCoE partners (~25% of available instrument time)

Relevance – Enhanced Physisorption

Simulated Langmuir isotherms at 200 and 293 K for an adsorbent with $\Delta H = 15$ kJ/mol (assumptions: maximum capacity = 10 wt. %, $\Delta S = 95$ J K⁻¹ mol⁻¹)

Physisorption of H₂ using materials with a practical enthalpy can enable hydrogen storage systems that operate at moderate pressures and temperatures

Approach – Technical Motivation

- How can we enable and execute discovery of materials with enhanced enthalpy relative to "conventional" hydrogen storage materials (eg. activated carbon)?
 - Interaction of hydrogen with either electron-deficient species (electrophiles, Lewis acids) or very strong electron donors (Lewis bases)

Interaction of H₂ with a fluoride anion

 $\Delta E = -24.3 \text{ kJ/mol H}_2$

Adsorption of H_2 on boron atoms of BC_3

Approach – Discovery of New H₂ Storage Materials

- Translate predictive computational modeling to development and testing of new H₂ storage materials
 - Novel materials development based upon theoretical predictions of high H₂ storage density and/or enthalpy
 - Materials synthesis (fluorine chemistry, novel boron-containing carbon materials)
- General quantitative computational models for new materials discovery
 - Through collaborative efforts within the CoE, realize a more practical overlap between computational and experimental work (e.g., modeling mechanism of hydrogen spillover)
- Accurate measurement techniques
 - Correction for helium adsorption effects on H_2 isotherms
 - Surface area determination using H_2 condensation as a more informative alternative to conventional N_2 sorption methods

Approach - Milestones

	Milestone						
3QFY08	Finish <i>ab initio</i> MD simulations and minimum energy path calculations on BC_3 and related compounds						
1QFY09	Find optimal BF ₄ -/F- ratios for maximum H ₂ uptake and heat of adsorption in intercalated graphite						
2QFY09	Go/no go decision on F ⁻ intercalated graphite Identify synthetic routes to novel boron-containing carbon materials						

Technical Accomplishments – Synthesis of F^{-}/BF_{4}^{-} Graphite Intercalation Compounds (GIC)

Our upgraded experimental procedure has facilitated the use of pure F_2 which allowed the synthesis of 1^{st} stage BF_4^- intercalated graphite

Technical Accomplishments – Creation of Microporosity by Anion Intercalation

1st stage GIC shows no improvement in surface area

Technical Accomplishments -

Comparison of H₂ isotherms on 1st and 2nd Stage Compounds

1st stage GIC shows higher initial heat, lower overall capacity

Technical Accomplishments – Synthesis and Testing of GIC's Prepared with High Surface Area Hosts

Carbon	S.A. (m²/g)	Intercalant	Elemental Analysis	S.A. of GIC (m²/g)	H₂ capacity @ 25 °C, 100 bar	Δ H (kJ/mol H ₂)	
Graphite	15	BF ₄ -	$C_{25}BF_4$	75	0.12 wt.%	12	Change
Graphite	15	HF_{2}^{-}	C _{3.4} F	18	0.04 wt.%	4.5	Anion
Graphitized Activated Carbon	145	BF₄⁻	C ₅₁ BF ₅	20.7	0.18 wt.%	7	Change
Activated C Fiber	1800	BF₄⁻	C ₁₅₄ BF ₃₁	775	0.20 wt.%	7	Host
Activated Carbon (AX-21)	2500	BF ₄ -	C ₁₂₃ BF ₈	2390	0.60 wt.%	7	Material

Elemental Analysis indicates low levels of intercalation and covalent C-F bond formation (fluorination)

Isosteric heat calculations indicate little enhancement of H₂ adsorption enthalpy relative to host materials

Background - Hydrogen Spillover in BC₃

Published LDA calculations indicate that H₂ undergoes spontaneous dissociation in bulk BC₃ Zhang and Alavi (J. Chem. Phys. 2007, 127, 214704)

 H_2 dissociation can be activated via orbital interaction between σ -orbital of H_2 (HOMO) and the empty p_z -orbital of B, leading to C-H bond formation

Technical Accomplishments – Understanding H_2 Dissociative Chemisorption in <u>Bulk</u> BC₃

H₂ diffusion into BC₃ pore: facile

H₂ dissociation inside BC₃: facile

H₂ dissociative chemisorption in <u>bulk</u> BC₃ is energetically possible

Technical Accomplishments – Identification of Barriers for Migration of Chemisorbed Hydrogen on BC₃ Sheets

H diffusion inside BC₃

Barrier for $1 \rightarrow 2$: ~ 0.47 eV Barrier for $1 \rightarrow 4$: ~ 0.78 eV Barrier for $1 \rightarrow 3$: ~ 1.30 eV

Long-range diffusion of chemisorbed H may be prevented by large barriers for diffusion steps that require $C \rightarrow B$ transfer of hydrogen

Technical Accomplishments – Calculation of H_2 Adsorption Energy in Bulk BC₃

H₂ dissociative chemisorption in bulk BC₃ is energetically possible, but chemisorbed H may be too stable at high loadings for reversibility

Collaborations

Pennsylvania State University

Chung Research Group:

Measurement of hydrogen isotherms and exchange of ideas on materials development **Foley Research Group**:

Measurement of hydrogen spillover on Pt/C samples

NREL, Rice University, University of Michigan Coordination of computational modeling of hydrogen spillover

Texas A&M University Measurement of hydrogen isotherms and isosteric heats (joint publication)

Proposed Future Work

- Computational Modeling
 - Study incorporation of other heteroatoms in BC₃ to modify hydrogen chemisorption energies \rightarrow promote reversibility of hydrogen adsorption
 - Understand the thresholds for hydrogen physisorption/chemisorption in ${\rm BC}_{\rm x}$ materials
 - Predictive computational modeling of new BC_x materials
- Materials Development
 - Develop strategies for increasing surface area of BC_x materials (collaboration with M. Chung – Penn State University)
 - Develop a systematic model of B content and H₂ adsorption enthalpy using isosteric heat determinations and, potentially, calorimetry
- Adsorption Characterization
 - Explore utility of H₂ surface area determination for microporous adsorbents developed in the current project and HSCoE partner projects

Summary

- Fluoride materials were a good idea but we found the fundamental limits were far too low for practical H2 storage materials
- A good alternative are boron-containing carbon higher heats, possibility for high surface areas
- Use of modeling as a guide for synthetic targets appears to yield promising approaches