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Timeline

Project start date:
September 1, 2008
Project end date:
January 31, 2012
Percent complete: 10%

Budget

Total project funding:

— DOE share: $1.90M

— Contractor share: $0.51M
Funding FY08-09:

— DOE share: $579K

— Contractor share: $166K

Overview

Barriers
Barriers addressed:

— System weight and volume

— System cost

— Charging/discharging rates

— Thermal management

— Lack of understanding of hydrogen
physisorption and chemisorption

Partners

Interactions/collaborations:

* NREL

« J. llavsky—Advanced Photon Source, ANL

* Y. Liu, C. Brown—NIST

* L. Firlej—U. Montpellier II, France

* B. Kuchta—U. Marseille, France

» S. Roszak—Wroclaw U. Technology, Poland

» S. Kjelstrup—Norwegian U. Science &
Technology, Trondheim



Objectives

Overall:

* Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon (B, Fe, Pt, ...),
derived from corncob, for reversible H, storage with superior storage capacity:

1) Create surface areas = 4500 m?/g and average binding energy = 12 kJ/mol

2) Fabricate non-hybrid materials, functionalized with B, Fe, ..., but not Pt:
physisorption of H, on high-surface-area, high-binding-energy surfaces

3) Fabricate hybrid materials, functionalized with B, Fe, ... and Pt with spillover capability:
physisorption of H, & chemisorption of H on one and the same surface

» Characterize materials & demonstrate storage performance

1) Determine pore-space architecture, structure of B, Fe, Pt, ... sites/clusters, associated
sorption H, isotherms (1-100 bar), isosteric heats, and kinetics, at 77-450 K

2) Validate theoretical modeling predictions (computer simulations of binding energies,
sorption isotherms, surface diffusion)

» Optimize pore architecture and composition

1) Use computer simulations as function of surface architecture & composition, to provide
directions for optimization

2) Fabricate monoliths of optimized materials; determine storage capacities and charge/
discharge kinetics under conditions comparable to an on-board H, tank

3) Reach target of 60 g H,/kg carbon and 45 g H,/liter carbon at 50 bar and 300 K,
on non-hybrid monoliths, with pressure swing alone

4) Reach target of 90 g H,/kg carbon and 81 g H./liter carbon either (a) at 50 bar and 100 K,
on non-hybrid monoliths, with pressure swing alone; or (b) at 50 bar and 300 K,
on hybrid monoliths, with combined pressure and temperature swing



Approach

* Maximize surface area
Maximizes # of adsorption sites
(‘Engineered Nanospaces I')

— High-surface area carbon from
corncob (U. Missouri patent

pending): S; ~ 3000 m2/g
— Substitute with B and creaw
surface area by boron neutron capture;

fission into Li and alpha particle,
B + 'n — [""'B] — “Li + *He

(U. Missouri Research Reactor),

Nucleopore
(track-etched
poly-carbonate
membrane) —»

and etching of fission tracks , ,

— U. Missouri (2009): T _}272‘?‘0‘“ e
Theor. optimum track width: w ~ 1 nm 00000000 % 00000000 (o
Theor. max. surface area: S; = 25, }gzg*@

Excision of six-membered rings gives j’m
6200 m?/g (Chae et al., 2004) ———» |3
¢ Create nanopores Asial potentials of slit-shaped pores

Raises H, binding energy A

(‘Engineered Nanospaces II') 200

In narrow pores, adsorption potentials 00 . -

Bjinding\energy

overlap and create deep energy wells: iy =g

Binding energy in wide pore: 5 kJ/mol o —visbs TaA. 3 4B

Binding energy in narrow pore: ~9 kJ/moll ——wicth=13.48A -

-1000

2 4 6 8 10 12

EXpeCt: Pilm, narrow pore >> Pilm, wide pore >> Pgas



Approach, Cont.'d

» Surface functionalization with B/Fe/... (‘Substituted Materials’)
Raises H, binding energy further
— Substitute with boron:
Binding energy of H, on graphite: 5 kJ/mol
Binding energy of H, on B-substituted carbon: 10-30 kJ/mol
(electron donation from H, to electron-deficient B)
Twofold use of B: (a) boron neutron capture;
(b) remaining B increases binding energy
— Substitute with Fe:
Fe atoms/clusters increase binding energy (mechanism yet
to be understood)
— Perform atomistic computer simulations of H, sorption to
determine optimal pore architecture and B/Fe/... conc.

0.1

Energy (eV)
- =
N

g

» Surface functionalization with Pt clusters
Dissociates H, and creates chemisorbed H
— Binding energy of H on carbon: 20-60 kJ/mol
— Twofold use of high surface area: (a) physisorbed H,;
(b) chemisorbed H.
— Perform computer simulations of H surface diffusion and
ads./des. kinetics to determine optimal Pt distribution

pillover Materials’)

— 77K, slit 10.1A
— 77K, open
— 298K, slit 10.1A

* Manufacture monoliths : able, lightweight tank
— Minimizes wide pores; minimizes tank volume
— Low pressure, 50 bar: enables conformable tank design
— High binding energy, 15 kd/mol: enables storage at 300 K




Technical Accomplishments 1

Materials synthesis and performance

Measures of H, adsorption of interest
m:. (p, O_
» Gravimetric excess adsorption: M

m,
Direct experimental quantity; depends only on ¥ and how Adsorbed film & aEgggrSgefgaSS
strongly surface adsorbs H,, but not on pore volume in pore. X 7)
. Sample mass: m, Mags\ P>
. . m, (p.T) Specific Mass of
* Areal excess adsorption (Liu et al., 2008): — — surface area: 3 adsorbed H,,
mX Porosity: less mass of
s y: ¢
. equal volume
Depends only on how strongly surface adsorbs H, kaeletalldensny of H, in the
; indi of sample: Pse1  absénce of
Is (p, T)-dependent measure of binding energy Apparent density Sasorption
of sample (incl.
pore space): Pagp
_ _ , m, (p.T) mS (p.T) pP..(p.T)
 Gravimetric storage capacity: D7) _(PagsiPo” ), Poas ¢
m, m, Pae 10 Independent
Increases with increasing porosity design variables

m_(p.T) _ m_, (p.T)
g i flIS

+ Volumetric storage capacity: Pecet = Poac(P- D)L= ) + p,..(p.T)

m
Increases with decreasing porosity

* |In present case studies:

O

Total mass
stored,

m_(p,T)

Mass of
adsorbed
& non-
adsorbed
H,

— X from BET analysis of N, adsorption isotherm at 77 K, 0.01 < p/p, < 0.03, rounded to nearest hundred

— ¢ from N, adsorption at 77 K, at p/p, = 0.995
— H, sorption excess isotherms measured volumetrically on Hiden HTP sorption analyzer
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Technical Accomplishments 2

Materials synthesis and performance: boron-free carbons

H, Gravimetric Excess Adsorption at 80 K

Precursors for B-substitution

Batch 5.1 3K 4K
Ratio KOH:C for chem. activation 2:1 3:1 4:1
Specific surface area () 2600 m’/g | 2500 m*/g | 2600 m’/g
Porosity (¢) 0.77 0.75 081

“Chahine rule” (1 wt% exc. H, per
500 m’/g @ 77 K & 40 bar) predicts | ~5 wt% ~5 wt% -5 Wt%

* 4K (Adsorption)

4K (Desorption)

Batch 5.1 (Adsorption)

| % Batch 5.1 (Desorption)

20 30 40 50 60

Pressure (bar)

70 80

Gravim. excess H,/C @ 50 bar 4.4 wt% 6.3 wt% 7.3 wt%
Gravim. stored H,/C @ 50 bar 7.3 wt% 8.6 wi% 10.6 wt%
Volum. stored H,/C @ 50 bar 34 gfliter | 43 gfliter | 40 gfliter
H, Areal Excess Adsorption at 80 K
35
3 “Chahine|rule” 3 Oy Q&
A X X X x [T
P not|satisfied « X|X
X

52 * olool o @ &R paea

= X o Lol o7

= g o T
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2 n » x X x

2 X x

@ 15 % t
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Q X .

3 o X Increasing KOH:C B3 (Desornion]

g ratio ingreases * 4K (Adsorption)

< b ndlng energy 4K (Desorption)

5 1 Batch 5.1 (Adsorption) ||
% Batch 5.1 (Desorption)
i \
ok |
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Materials synthesis and performance

Departures from “Chahine rule” due to high binding energies,

Eg ~ 9 kd/mol, in narrow pores

» Preparation of carbons suggests approximately slit-shaped pores

reminiscent of exfoliated graphite

* Predominant pore width: 0.7-1.2 nm (see materials characterization)

) 4
}h/\\ﬂ\‘\é

l}l/.\ “§
SN

» Grand-canonical Monte Carlo (GCMC) simulations of H, adsorption in slit-
shaped pores of width 0.6 nm (Eg = 9.0 kdJ/mol) and 2.0 nm (Eg = 4.5 kJ/

with £ = 2600 m?/g (Kuchta & Firlej):

0
-100
-200

-300

Energy (K)
Energy (K)

-400

-500
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Technical Accomplishments 3

: boron-free carbons, cont.’d

» Best fit to experimental data for Sample 3K (excess ads. & total amt. stored)
yields: ~37% sites with Eg = 9.0 kd/mol; ~63% sites with Eg = 4.5 kJ/mol

wit%

] H, Excess Adsorption at 80 K on Sample 3K

_ /’,,’-’-—-’.-’" gEEN = !ff!j'_!!_

J

1 / m 3K excess

—eo—FIT: 32% D6 + 68% D20
—o—FIT: 37% D6 + 63% D20

20 40 60 80 100
P (bar)

o

| H, Total Amount Stored at 80 K on Sample 3K

L

o
¢ —e— FIT: 32% D6 + 68% D20
e FIT: 37% D6 + 63% D20

o#

20 40 60 80 100
P (bar)



Technical Accomplishments 4
Materials synthesis and performance: boron-substituted carbons

Boron substitution by deposition/decomposition of

decaborane (B10H14) H, Gravimetric Excess Adsorption at 80 K
?O - - - - - - -
_-.--_ .-h- S _ 00000_0 °o| ¢ gjm_ﬁcpc_:um_
ot ,. e ) o
\\%g" F'i S 5o oo. . . | XA X A% X X R |
L ‘LJ ::\'_1'1 g_
y §u o
<
ﬁ © 3K (Adsorption)
E | C13K (Desorption)
. T o 3K-H7 (Adsorption)
* Method I: Deposition of B,yH,, as thin liquid film; thermal E | 36417 (Desarption
decomposition of BoH;4/Bo,H, £
j
(G

* Method II: Submonolayer of B,,,H, from thermal decomposition of

B4oH44 vapor (admixed B,,H,,); thermal decomposition of B, H,
0 10 20 30 40 50 60 70 80 90 100
Pressure (bar)

* Method IIl: Submonolayer of B,,,H, from thermal decomposition of

B4oH44 vapor (sublimed B,,H,,); thermal decomposition of B,,,H, H, Areal Excess Adsorption at 80 K

40
* Representative results: 25 | | |
B:C, product | SpgCific E AR B
Reaction B:C, input | 3’ ® 30
) P T (pGAA) irface area 2
“3K” (boron-free precursor) 0.0 wi% 00 wt% / 2500 m’/g 22 oo oo ¢ 1 & & poaa
/) ¢ a3 - 2 a
“3K” + By, I, —=l s “3K-H7 8.8 wi% 60 wi%/ | 1500 m*/g ]
3K+ BH, = 3K H6™ | 18wi% | 14w% | 2400m¥g | 3 el i
“3K” + B H, , —tdll s <38 _H5” N/A y\vt% 2800 m*/g 5 3KeH7 (Adsorption)
"  3K-H7 (Desorption)
W
=

 Case study 3K-H7: gravimetric excess ads. lower than in pr: sor 5
because surf. area is lower (pore blocking); but areal excess ads. at il | | . _ _ |
50 bar is ~30% higher than in boron-free carbon. Work underway to 0O 10 20 30 4 50 6 70 8 9 100
improve incorporation of B in carbon matrix. Pressure (bar)



Technical Accomplishments 5

Materials synthesis and performance: magnetic carbons

v

=

Char before KOH Carbon (3K) after
treatment KOH treatment in
steel reactor

Magnetic properties of samples

 Bulk graphite with perfect structure is diamagnetic

» Carbon samples activated with KOH in stainless
steel reactor are superparamagnetic/ferromagnetic.
Suspected origin: Fe clusters in carbon

3
—

Corncob

Sample S-33/k is

& ==

Carbon (3K*) after
KOH treatment in
Al,O4 reactor

Sample Batch 5.32 is super-

ferromagnetic at 300 K paramagnetic at 300 K (zero
(nonzero coercive field): coercive field):
0.4 4 — ¢ y
1 ‘ =— Magnetization —— Magnetization
034 Virgin curve | a—_ —— Virgin curve
= 02- 21
"o @ 1
2 014 3 14
g 0.1 { E, _
« Elemental composition of Sample 3K 5 % /,f_" % °]
N 014 4 N
3 /f B 11
Element | Sample | Stainless Steel, %, 02 5
(PIXE) | Grade 340 = 300K =27 300 K
Cr 990 ppm | 17-20% 031 2]
Mn 130 ppm | <2% 044 ]
. T T T T -4 T T T T T T T
;e (1);403% 2510 ﬁ; -6000 -4000 -2000 0 2000 4000 6000 -6000 -4000 -2000 0 2000 4000 6000
L ppm | o-117 Applied Magnetic Field (o) H (0e)

10



Technical Accomplishments 6

Materials synthesis and performance: magnetic carbons, cont.’d

Magnetic properties of samples enhance H, adsorption

(preliminary results)

+ Saturation magnetization, M, remnant magnetization, M,
coercive field, H,, and magnetic susceptibility, y, at 300 K:

M 4
————— MS
Mr
A
4 / N
F.d L
H, H
Sample M, (emu/g) |H, (oe) |M, (emu/g) |x (emu/g-oe)
S-33/k 05 118 2.69-107  [2.12-107
Batch5.1 |[1.3 81.5 5.05-10° |5.82-107
Batch52 |15 34 435107 1.30-10°
Batch 5.32 |35 3.1-107° [4.64-10° 1.82:107°
Batch54 |8 71 337101 426107
Darko 2.25 |4 68 52510 |5.65-107

* Measured saturation magnetizations are consistent
with Fe-induced magnetism: 0.5 wt% Fe in sample
contributes 1.0 emu/g for Fe, and 0.7 emu/g for Fe;O,

« Larger coercive fields suggest larger size of magnetic
clusters. S-33/k has largest coercive field at 300 K.

Excess Ads. (g/kg)

2

o
o
J

]
o
1

[=2]
o
1

[}
o
1

Is
(=]
1

[+
(=]
1

20

Areal Excess adsorption ug/m

25

2.0+

1.5 4

H, areal excess adsorption
vs. coercive field,
at 300 K & 50 bar

4 >peon

S-33K
Batch

Batch 5.2
Batch 5.32

5.1

20 40 60 80
Coercive field He (oe)

T
100

u n .-..T"‘?%

o oo

H, gravimetric excess for
magnetic (3K) & nonmagnetic

(3K*)

sample, at 80 K

10

20 30 40 50
Pressure (bar)

60

T y
120

-

[ ]
[ ]
> B
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Structural characteri

Surface/pore structure of selected samples

Pore-size distributions from

0.20 1
N, isotherms at 77 K, using
non-local density functional
theory
0.15 1
——@—=Batch 5.1 Sample on low side of
“Chahine rule”
0.10 =—O==S5-33/k  Magnetic sample with

largest coercive field

0.05 1

Differential Pore Volume (cmjf(g-A))

0.00 y - T '
5 10 15 20 25 30 35 40 45 50

Pore Width (A)

Technical Accomplishments 7

zation of samples

SEM and TEM of S-33/k confirm essential absence of
large pores

« Significant presence of pores larger than 1.0 nm in
Batch 5.1 is consistent with its underperformance
relative to “Chahine rule”

* Burress et al., Nanotechnology 20 (2009):
Batch 5.1: ~25% high-binding-energy sites for H, /
S-33/k: ~40% high-binding-energy sites for H,,
consistent with its high H, areal excess adsorption as a

MD simulations in pores of variable width predict two
distinct binding energies:

Low energy High energy

(width = 1.0 nm) (width <1.0 nm)
Prediction: ~5 kd/mol ~8 kd/mol
Exp./Batch 5.1: 4.8 kJ/mol 9.0 kd/mol
Exp./S-33/k: 6.4 kd/mol 8.6 kd/mol

function of coercive field

12



Technical Accomplishments 8
Structural characterization of samples, cont.’d

Ultra-small-angle x-ray scattering (Advanced Photon Source) from B-free and B-substituted carbons

Sample 4K: B-free carbon, KOH activation; 2600 m?/g
Sample 4K-B11: B-substituted carbon, KOH/KBH, activation;
7 wt% B (PGAA); surface area TBD

Sample 3K: B-free carbon, KOH activation; 2500 m?/g
Sample 3K-H7: thermolysis of B,,H;, on 3K; 6 wt% B
(PGAA); 1500 m?/g

Intensity [em’']

| Lo il L 1 | L i I ! 1l A [ | llIlld 23 1 BERLL B R iaall p ] llllld

10" = s
o A%
) . : 10 : : :
o° |\ ° Shifted beam for 3K-H7 gives same L %, ° Shifted beam for 4K-B11 gives same
“\, signal: homogeneous B distribution 10° %~ signal:-homogeneous B-distribution
00 W¥g)~q22for0.01AT<q<03AT [ e \{not shown)
o for3K-H7: consistent with corrugated . L\‘E\\wer intensity at high q for 4K-B11:
slit-shaped pores (lateral coherence 108 consjstent with pore widening
10° - length~60 nm) = -
- Slightlyigher intensity at 0.01 A1 < 5 10°
10° q < 0.3 AN for 3K-H7: consistent with [~ g \
_1 occasional’pore blocking by boron g 10 \\
100 ; : r £
deposits I \
10° [
10” AN
10° F \
10' S
10" 4 o 3K-HT - \
------ 3K-HY Shifted 100 —— 4K-B11 N -

10" — LK L A 4K e

11 —r r_””,l o r1'rr11 o f'l'lf'1'| = r:;x:ﬁ | llllll'l T T THRNNT T 1 RTIEIT L] I‘_.-I—Ll"l‘l'l‘q

10 10° E E_'f] 107 10° 10" 10° 107 10" 10

q 4
qlA ]
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Technical Accomplishments 9

GCMC simulations in B-substituted materials

H,-H, interaction

H,-graphene interaction

10

V(D guphene = 2057

e

-~ %ZE i
& 3
;“&“(22‘;‘4‘
EETER
ik
(3
Super-atom model
6 Molecular H, £ o

7 H.H

,-H, 34.2 2.96
/ / HC 451  2.89
Radius=0o Potential parameters

Super-atom H,

2o 10 - 4
V(Z) i, - yrophene = 200 €| = —| =|—
| Hy-graphene = 2708 | | — z
V. (r.T)= V(r}:-t-
+ i V'(r)+—2V () + Hh‘“‘“‘n“‘
24u r —
BOLISK () AV(r) ) The quantum fluid molecule is
= 1 f;}!,u’ [ pe = p= +V (’)} T represented by a Gaussian wave
~ - packet of width:
h
1“2ka7‘
so the Feynman -Hibbs effective
[ 12 6 potential is an average of classical
V(r)H 0= 4g o = o potential over the Gaussian wave
2t r r packet.

Graphene +9% B

nitio - 6.5 kJ
Hypothetical - 10 kJ
Hypothetical - 15 kJ

6 7
Distance (A)

il
10
g
- — -u
08' .f,)l.,{{_.,_ ol
] e
?__ ,//D’n—_ini_7¥nk—‘li¥ o
= = R
o5 ):r T
54
s
3.'L
] total
2'_ —eo— T=298K |,
I '-"'8""':'8,ﬁ'[2f,_, o
0 1 /n,_-:-o—:: O:’.‘ — (— =
0 20 40 & e 09551|20
P (bar)




Technical Accomplishments 10

GCMC simulations in B-substituted materials, cont.’d

The colors of the isotherms correspond to
the colors of the potentials

——ablnitio - 6.5kJ

i/ | — ical - 10kJ
T I T - I
D‘D/
2 T=77 K/
(=] ,
&) R/
-%B? /D/Drf_dmi.f — e
6l
/ L = .
ay - T=298K HE
2{/ I B 2
0 T .__—T__—. T T T T T T
0 20 40 60 80 100 120

E = 4.5 kJ/mol E =15 kJ/mol

B8+ 8-
7 " PRI S
6] 6 A
4 T=28K -3 ,;L“,/ T=208K
& = -l
3] E=45klimol % E =15 kJ/mol
2] - . 2
==
14 '}l i e T 1
0 ; + + ; , 0 ; + + ; ;
6 8 10 12 14 6 8 10 12 14
pore width (A) pore width (A)
B r=77K Blr=77K
144 14
12{ E =45 kJimol 12]E = 15 kJ/mol
g %o /
6] ma— == 6 /
4] s .//. 4]
24 24
ol : : : : ol : : ‘ :
6 8 10 12 14 6 8 10 12 14
pore width (A) pore width (A)

100 bar

T=298 K

T=77TK

100 :
g0 100 bar Total adsorption
80 ] T =298 K
701 D= 67 A 15 kJ/mol; 26 wt% &
] D=8 >45 kg/m3 achievable
60 - ¥
] N
“c 504 @ D= 11-12 A
=) . TN
x 40+ EEUURE I
<4 K r R
R S
307 b T —u—-4.5 kJ/mol
20 4 \ —e— 6.5 kJ/mol
104 l, -10 kJ/mol
0 —v—-15 kJ/mol
O ) ' ) ) 1 ' ) v ) 4 I v 1
0 2 4 6 8 10 12 14 16 18
wt%
110
1004 100 bar
90-' Dnore= 6-7 A J
80 :
70 4
. 60- O .
e 0 O 15 kJ/mol; 29 wt% &
;_i) 50 H =81 kg/m3 achievable
40-
30 0— -4.5 kJ/mol
20] Total adsarption '?-05 ::j; 22:
104 T=77K —v— 15 kJimol
0 T T T T T T T T
0O 2 4 6 8 10 12 14 16 18

Wi% 15



Conclusions

* For given gravimetric excess adsorption (independent of pore volume), gravimetric and
volumetric storage capacity can be engineered by appropriate choice of porosity (independent
design variable).

» Manufactured boron-free carbon with gravimetric excess adsorption of >7 wt%, gravimetric
storage capacity of >10 wt%, and volumetric storage capacity of 40 g/liter, at 80 K and 50 bar.

» Departures from “Chahine rule” seen. Attributed to high binding energies in narrow pores.
Validated by GCMC simulations with binding energy ~9 kd/mol in narrow pores, present on
~40% of total surface.

» Manufactured boron-substituted carbon by thermolysis of decaborane, with ~30% higher areal
excess adsorption at 80 K and 50 bar, from 6 wt% boron. Suggests significant increase in
binding energy. Boron-substituted carbons can be made in this way without compromising
large surface areas.

» Observed magnetic carbons, with enhanced H, adsorption, from ~0.5 wt% Fe.

» Performed GCMC simulations of sorption equilibria on surfaces with 15 kd/mol binding energy
and variable pore width. Attractive H,-H, interactions make pores of width > 1.0 nm have
unexpectedly high storage capacities. Simulations predict that >6 wt% and >45 kg/m3 can be
achieved at 298 K &100 bar, and > 9 wt% and >81 kg/m3 at 77 K & 100 bar, for various pore
widths.

16



Collaborations

* Midwest Research Institute (Private Sector): Subcontractor for design and construction of test
vessel for hybrid and nonhybrid monoliths, under conditions comparable to a full-fledged
hydrogen tank.

* NREL (Federal): Validation of H, uptake data.

» Advanced Photon Source/ANL (Federal): Ultra-small-angle x-ray scattering studies of samples
under General User Program (GUP-10069).

* NIST (Federal): Collaboration with Y. Liu and G. Brown on small-angle neutron scattering
experiments on samples loaded with H,, including density correlations of nonadsorbed H..

* U. Montpellier Il and U. Marseille, France (Academic): Collaboration with L. Firlej and B.
Kuchta to perform GCMC simulations.

* Wroclaw U. Technology, Poland (Academic): Collaboration with S. Roszak to obtain adsorption
potentials for H, sorption on B-substituted materiasls from ab initio quantum-chemical
computations.

 S. Kjelstrup, Norwegian U. Science & Technology, Trondheim (Academic): Collaboration on
experimental and computational studies of diffusion of chemisorbed hydrogen on carbon
surfaces.
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Future Work: Plans for 2009/10

* Investigate performance of boron-substituted materials, including isosteric heats of adsorption,
as a function of deposition condition of decaborane; investigate role of thermal annealing.

» Compare results with other methods of introducing boron into carbon matrix.
* Determine chemical nature of boron in substituted materials.

» Perform GCMC simulations of H, sorption equilibria on B-substituted materials with adsorption
potentials determined from ab initio computations.

* Investigate physical mechanism of enhanced H, adsorption on magnetic/Fe-containing
materials (interaction of spin isomers of H, with magnetic clusters; Fe as catalyst for
dissociation of H, and s chemisorbed atomic hydrogen).

» Manufacture and investigate performance of materials with spillover capability.

* Create additional surface area by boron neutron capture an etching of fission tracks.
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