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Overview

Timeline
• Project start date:

September 1, 2008
• Project end date: 

January 31, 2012
• Percent complete: 10%

Barriers
Barriers addressed:

– System weight and volume
– System cost
– Charging/discharging rates
– Thermal management
– Lack of understanding of hydrogen

physisorption and chemisorption  
Budget
• Total project funding:

– DOE share: $1.90M
– Contractor share: $0.51M

• Funding FY08-09: 
– DOE share: $579K
– Contractor share: $166K

Partners

Interactions/collaborations:
• NREL
• J. Ilavsky—Advanced Photon Source, ANL
• Y. Liu, C. Brown—NIST
• L. Firlej—U. Montpellier II, France
• B. Kuchta—U. Marseille, France
• S. Roszak—Wroclaw U. Technology, Poland
• S. Kjelstrup—Norwegian U. Science &

Technology, Trondheim
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Objectives

Overall:

• Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon (B, Fe, Pt, …),
derived from corncob, for reversible H2 storage with superior storage capacity:
1) Create surface areas ≥ 4500 m2/g and average binding energy ≥ 12 kJ/mol
2) Fabricate non-hybrid materials, functionalized with B, Fe, …, but not Pt:

physisorption of H2 on high-surface-area, high-binding-energy surfaces
3) Fabricate hybrid materials, functionalized with B, Fe, … and Pt with spillover capability:

physisorption of H2 & chemisorption of H on one and the same surface

• Characterize materials & demonstrate storage performance
1) Determine pore-space architecture, structure of B, Fe, Pt, … sites/clusters, associated

sorption H2 isotherms (1-100 bar), isosteric heats, and kinetics, at 77-450 K
2) Validate theoretical modeling predictions (computer simulations of binding energies,

sorption isotherms, surface diffusion)

• Optimize pore architecture and composition
1) Use computer simulations as function of surface architecture & composition, to provide

directions for optimization
2) Fabricate monoliths of optimized materials; determine storage capacities and charge/

discharge kinetics under conditions comparable to an on-board H2 tank
3) Reach target of 60 g H2/kg carbon and 45 g H2/liter carbon at 50 bar and 300 K,

on non-hybrid monoliths, with pressure swing alone
4) Reach target of 90 g H2/kg carbon and 81 g H2/liter carbon either (a) at 50 bar and 100 K, 

on non-hybrid monoliths, with pressure swing alone; or (b) at 50 bar and 300 K,
on hybrid monoliths, with combined pressure and temperature swing

3



Approach

• Maximize surface area
Maximizes # of adsorption sites
(‘Engineered Nanospaces I’)
– High-surface area carbon from

corncob (U. Missouri patent
pending): Si ~ 3000 m2/g

– Substitute with B and create additional
surface area by boron neutron capture,
fission into Li and alpha particle,

10B + 1n → [11B] → 7Li + 4He 
(U. Missouri Research Reactor),
and etching of fission tracks

– U. Missouri (2009):
Theor. optimum track width: w ~ 1 nm
Theor. max. surface area: Sf = 2Si

• Create nanopores
Raises H2 binding energy
(‘Engineered Nanospaces II’) 
In narrow pores, adsorption potentials
overlap and create deep energy wells:
Binding energy in wide pore: 5 kJ/mol
Binding energy in narrow pore: ~9 kJ/moll
Expect: ρfilm, narrow pore >> ρfilm, wide pore >> ρgas
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Nucleopore
(track-etched
poly-carbonate
membrane)

Excision of six-membered rings gives
6200 m2/g (Chae et al., 2004)

1.4 nm

 

Binding energy



Approach, Cont.’d
• Surface functionalization with B/Fe/… (‘Substituted Materials’)

Raises H2 binding energy further
– Substitute with boron:

Binding energy of H2 on graphite: 5 kJ/mol
Binding energy of H2 on B-substituted carbon: 10-30 kJ/mol

(electron donation from H2 to electron-deficient B)
Twofold use of B: (a) boron neutron capture;

(b) remaining B increases binding energy
– Substitute with Fe:

Fe atoms/clusters increase binding energy (mechanism yet
to be understood)

– Perform atomistic computer simulations of H2 sorption to
determine optimal pore architecture and B/Fe/… conc.

• Surface functionalization with Pt clusters (‘Spillover Materials’)
Dissociates H2 and creates chemisorbed H
– Binding energy of H on carbon: 20-60 kJ/mol
– Twofold use of high surface area: (a) physisorbed H2;

(b) chemisorbed H.
– Perform computer simulations of H surface diffusion and

ads./des. kinetics  to determine optimal Pt distribution Lachawiec et al., 2005

• Manufacture monoliths for conformable, lightweight tank
– Minimizes wide pores; minimizes tank volume 
– Low pressure, 50 bar: enables conformable tank design
– High binding energy, 15 kJ/mol: enables storage at 300 K 
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Materials synthesis and performance

Technical Accomplishments 1

Measures of H2 adsorption of interest

• Gravimetric excess adsorption:

Direct experimental quantity; depends only on Σ and how 
strongly surface adsorbs H2, but not on pore volume

• Areal excess adsorption (Liu et al., 2008): 

Depends only on how strongly surface adsorbs H2
Is (p,T)-dependent measure of binding energy

Excess mass 
adsorbed,

Mass of 
adsorbed H2, 
less mass of 
equal volume 
of H2 in the 
absence of 
adsorption

Total mass 
stored,

Mass of 
adsorbed 
& non-
adsorbed 
H2

• Gravimetric storage capacity:

Increases with increasing porosity

• Volumetric storage capacity:

Increases with decreasing porosity

Independent 
design variables

• In present case studies:
– Σ from BET analysis of N2 adsorption isotherm at 77 K, 0.01 ≤ p/p0 ≤ 0.03, rounded to nearest hundred
– φ from N2 adsorption at 77 K, at p/p0 = 0.995
– H2 sorption excess isotherms measured volumetrically on Hiden HTP sorption analyzer
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Adsorbed film &
non-adsorbed
gas in pore.
Sample mass:
Specific
surface area:
Porosity:
Skeletal density
of sample:
Apparent density
of sample (incl.
pore space):



Materials synthesis and performance: boron-free carbons

Technical Accomplishments 2

10 wt% 12 wt%

p > 70 bar: ρgas grows
faster than ρfilm
Broad max.: ads. film still
strongly compressible

Precursors for B-substitution
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Increasing KOH:C
ratio increases
binding energy

“Chahine rule”
not satisfied



Materials synthesis and performance: boron-free carbons, cont.’d

Technical Accomplishments 3

Departures from “Chahine rule” due to high binding energies, 
EB ~ 9 kJ/mol, in narrow pores

H2 Excess Adsorption at 80 K on Sample 3K

• Preparation of carbons suggests approximately slit-shaped pores 
reminiscent of exfoliated graphite

• Predominant pore width: 0.7-1.2 nm (see materials characterization)

H2 Total Amount Stored at 80 K on Sample 3K

• Grand-canonical Monte Carlo (GCMC) simulations of H2 adsorption in slit-
shaped pores of width 0.6 nm (EB = 9.0 kJ/mol) and 2.0 nm (EB = 4.5 kJ/mol), 
with Σ = 2600 m2/g (Kuchta & Firlej):

• Best fit to experimental data for Sample 3K (excess ads. & total amt. stored) 
yields:  ~37% sites with EB = 9.0 kJ/mol; ~63% sites with EB = 4.5 kJ/mol
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Materials synthesis and performance: boron-substituted carbons

Technical Accomplishments 4

Boron substitution by deposition/decomposition of 
decaborane (B10H14)

• Method I: Deposition of B10H14 as thin liquid film; thermal 
decomposition of B10H14/B10xHz

• Method II: Submonolayer of B10xHz from thermal decomposition of 
B10H14 vapor (admixed B10H14); thermal decomposition of B10xHz

• Method III: Submonolayer of B10xHz from thermal decomposition of 
B10H14 vapor (sublimed B10H14); thermal decomposition of B10xHz

• Representative results:

• Case study 3K-H7: gravimetric excess ads. lower than in precursor 
because surf. area is lower (pore blocking); but areal excess ads. at 
50 bar is ~30% higher than in boron-free carbon. Work underway to 
improve incorporation of B in carbon matrix.
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Materials synthesis and performance: magnetic carbons

Technical Accomplishments 5

Magnetic properties of samples

• Bulk graphite with perfect structure is diamagnetic 

• Carbon samples activated with KOH in stainless 
steel reactor are superparamagnetic/ferromagnetic.  
Suspected origin: Fe clusters in carbon
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Corncob Char before KOH 
treatment

Carbon (3K) after 
KOH treatment in 
steel reactor

Carbon (3K*) after 
KOH treatment in 
Al2O3 reactor

• Elemental composition of Sample 3K

300 K 300 K

Sample S-33/k is 
ferromagnetic at 300 K 
(nonzero coercive field):

Sample Batch 5.32 is super-
paramagnetic at 300 K (zero 
coercive field):

TEM: Clusters
15-20 nm



Materials synthesis and performance: magnetic carbons, cont.’d

Technical Accomplishments 6

Magnetic properties of samples enhance H2 adsorption 
(preliminary results) 
• Saturation magnetization, Ms, remnant magnetization, Mr, 

coercive field, Hc, and magnetic susceptibility, χ, at 300 K:
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• Measured saturation magnetizations are consistent 
with Fe-induced magnetism: 0.5 wt% Fe in sample 
contributes 1.0 emu/g for Fe, and 0.7 emu/g for Fe3O4

• Larger coercive fields suggest larger size of magnetic 
clusters.  S-33/k has largest coercive field at 300 K.

H2 areal excess adsorption 
vs. coercive field,
at 300 K & 50 bar

H2 gravimetric excess for 
magnetic (3K) & nonmagnetic 
(3K*) sample, at 80 K

~7%



Structural characterization of samples

Technical Accomplishments 7
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• Significant presence of pores larger than 1.0 nm in 
Batch 5.1 is consistent with its underperformance 
relative to “Chahine rule”

• Burress et al., Nanotechnology 20 (2009):
Batch 5.1: ~25% high-binding-energy sites for H2
S-33/k: ~40% high-binding-energy sites for H2, 
consistent with its high H2 areal excess adsorption as a 
function of coercive field

Surface/pore structure of selected samples 

Sample on low side of 
“Chahine rule”
Magnetic sample with 
largest coercive field

Pore-size distributions from 
N2 isotherms at 77 K, using 
non-local density functional 
theory

MD simulations in pores of variable width predict two 
distinct binding energies:

Low energy High energy
(width ≥ 1.0 nm) (width <1.0 nm)

Prediction: ~5 kJ/mol ~8 kJ/mol
Exp./Batch 5.1: 4.8 kJ/mol     9.0 kJ/mol
Exp./S-33/k: 6.4 kJ/mol 8.6 kJ/mol

SEM and TEM of S-33/k confirm essential absence of 
large pores



Structural characterization of samples, cont.’d

Technical Accomplishments 8
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Ultra-small-angle x-ray scattering (Advanced Photon Source) from B-free and B-substituted carbons

Sample 3K: B-free carbon, KOH activation; 2500 m2/g
Sample 3K-H7: thermolysis of B10H14 on 3K; 6 wt% B
(PGAA); 1500 m2/g

• Shifted beam for 3K-H7 gives same
signal: homogeneous B distribution

• I(q) ~ q–2.2 for 0.01 Å–1 ≤ q ≤ 0.3 Å–1

for 3K-H7: consistent with corrugated
slit-shaped pores (lateral coherence
length ~60 nm)

• Slightly higher intensity at 0.01 Å–1 ≤
q ≤ 0.3 Å–1 for 3K-H7: consistent with
occasional pore blocking by boron
deposits

Sample 4K: B-free carbon, KOH activation; 2600 m2/g
Sample 4K-B11: B-substituted carbon, KOH/KBH4 activation; 
7 wt% B (PGAA); surface area TBD

• Shifted beam for 4K-B11 gives same
signal: homogeneous B distribution
(not shown)

• Lower intensity at high q for 4K-B11:
consistent with pore widening



GCMC simulations in B-substituted materials

Technical Accomplishments 9
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B-substituted

B-free

B-free



GCMC simulations in B-substituted materials, cont.’d

Technical Accomplishments 10
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15 kJ/mol: ≥6 wt% & 
≥45 kg/m3 achievable 

15 kJ/mol: ≥9 wt% & 
≥81 kg/m3 achievable 

100 bar

100 bar

100 bar



Conclusions
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• For given gravimetric excess adsorption (independent of pore volume), gravimetric and   
volumetric storage capacity can be engineered by appropriate choice of porosity (independent 
design variable).

• Manufactured boron-free carbon with gravimetric excess adsorption of >7 wt%, gravimetric 
storage capacity of >10 wt%, and volumetric storage capacity of 40 g/liter, at 80 K and 50 bar.

• Departures from “Chahine rule” seen.  Attributed to high binding energies in narrow pores.  
Validated by GCMC simulations with binding energy ~9 kJ/mol in narrow pores, present on 
~40% of total surface.

• Manufactured boron-substituted carbon by thermolysis of decaborane, with ~30% higher areal 
excess adsorption at 80 K and 50 bar, from 6 wt% boron.  Suggests significant increase in 
binding energy.  Boron-substituted carbons can be made in this way without compromising 
large surface areas.

• Observed magnetic carbons, with enhanced H2 adsorption, from ~0.5 wt% Fe.

• Performed GCMC simulations of sorption equilibria on surfaces with 15 kJ/mol binding energy 
and variable pore width.  Attractive H2-H2 interactions make pores of width > 1.0 nm have 
unexpectedly high storage capacities.  Simulations predict that >6 wt% and >45 kg/m3 can be 
achieved at 298 K &100 bar, and > 9 wt% and >81 kg/m3 at 77 K & 100 bar, for various pore 
widths.



Collaborations
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• Midwest Research Institute (Private Sector): Subcontractor for design and construction of test 
vessel for hybrid and nonhybrid monoliths, under conditions comparable to a full-fledged 
hydrogen tank.

• NREL (Federal): Validation of H2 uptake data.

• Advanced Photon Source/ANL (Federal): Ultra-small-angle x-ray scattering studies of samples 
under General User Program (GUP-10069).

• NIST (Federal): Collaboration with Y. Liu and G. Brown on small-angle neutron scattering 
experiments on samples loaded with H2, including density correlations of nonadsorbed H2.

• U. Montpellier II and U. Marseille, France (Academic): Collaboration with L. Firlej and B. 
Kuchta to perform GCMC simulations.

• Wroclaw U. Technology, Poland (Academic): Collaboration with S. Roszak to obtain adsorption 
potentials for H2 sorption on B-substituted materiasls from ab initio quantum-chemical 
computations.

• S. Kjelstrup, Norwegian U. Science & Technology, Trondheim (Academic): Collaboration on 
experimental and computational studies of diffusion of chemisorbed hydrogen on carbon 
surfaces.



Future Work: Plans for 2009/10
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• Investigate performance of boron-substituted materials, including isosteric heats of adsorption, 
as a function of deposition condition of decaborane; investigate role of thermal annealing.

• Compare results with other methods of introducing boron into carbon matrix.

• Determine chemical nature of boron in substituted materials.

• Perform GCMC simulations of H2 sorption equilibria on B-substituted materials with adsorption 
potentials determined from ab initio computations.

• Investigate physical mechanism of enhanced H2 adsorption on magnetic/Fe-containing 
materials (interaction of spin isomers of H2 with magnetic clusters; Fe as catalyst for 
dissociation of H2 and s chemisorbed atomic hydrogen).

• Manufacture and investigate performance of materials with spillover capability.

• Create additional surface area by boron neutron capture an etching of fission tracks.
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