

A Synergistic Approach to the Development of New Hydrogen Storage Materials, Part I

Jean M. J. Fréchet, Martin Head-Gordon, Jeffrey R. Long, Thomas J. Richardson, and Samuel S. Mao

Department of Chemistry, University of California, Berkeley and Division of Environmental Energy Technologies, Lawrence Berkeley National Laboratory

May 22, 2009

Project ID # ST_32_Long

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: 12/1/04
- Project end: 11/30/09
- Percent complete: 70%

Budget

- Total funding expected: \$2.9M
 - \$1.8M from DOE to UC Berkeley
 - \$600k from DOE to LBNL
 - \$500k in cost-sharing
- Funding FY08: \$600k
- Funding FY09: \$567k

Barriers

- Identify new materials enabling a hydrogen storage system achieving:
 - 2 kWh/kg (6 wt %)
 - 1.5 kWh/L (0.045 kg/L)
 - 4 \$/kWh

Partners

- ChevronTexaco
- General Motors Corporation
- Electric Power Research
 Institute

Overall Program

Synthesis of porous polymers (Fréchet)

Synthesis of porous coordination solids (Long)

Calculations of H₂ binding energies (Head-Gordon)

Synthesis of destabilized hydrides (Richardson) Part I*

Part II

(BES)

H₂ storage characterization instrumentation (Mao)

Metal/metal hydride nanocrystals (Alivisatos)

Synthesis of nanostructured boron nitrides (Zettl)

Theory for boron nitride materials (Cohen and Louie)

H₂ Adsorption in a Hypercrosslinked Polymer

poly(chloromethylstyrene-codivinylbenzene)

Hypercrosslinked Polyaniline

Size Exclusion of Gases in Ultrananopores

Nanoporous Nitrogen-Containing Polymers

Crosslinked aromatic rings

Reagent	Surf. area, m ² /g	Pore volume, mL/g		
	Langmuir	Total	Nano	Ultra
Diiodobenzene	192	0.01	0.01	0.09
Tribromobenzene	384	0.13	0.11	0.06

Stronger H₂ Adsorption

Hypercrosslinked Polypyrrole

 Cs_2CO_3

DMSO

Crosslinking with alkyl groups:

Crosslinking with boron:

Size Exclusion of Gases in Ultrananopores

Hydrogen Storage in Completely-Activated MOF-5

- Currently best known material for cryogenic hydrogen storage at 77 K
- Performance at 298 K is poor owing to weak interaction of H₂ with surface

A Beryllium-Based Metal-Organic Framework

- Unprecedented structure with Be₁₂(OH)₁₂ rings and 12 and 15 Å channels
- Nitrogen adsorption isotherm affords BET surface area of 4020 m²/g

Low-Pressure H₂ Uptake in Be₁₂(OH)₁₂(BTB)₄

- Weak interaction of H₂ with surface, as desired for cryogenic storage
- At pressures up to 100 bar, expect gravimetric storage above MOF-5

Strong H₂ Binding in MOF-5 Functionalized with Cr⁰

- Orbital interactions lead to strongly-bound H₂ complex that is too stable
- Need to generate charge-induced dipole interaction of 15-20 kJ/mol

Room Temperature H₂ Uptake in Mn-BTT*

- Exposed Mn²⁺ sites lead to isosteric heat of adsorption of up to 10.1 kJ/mol
- Need to increase strength of binding and concentration of open metal sites

Paddlewheel Frameworks

 $M_3(BTC)_2$ (M = Cr, Cu, Zn, Mo)

	surface area (m²/g)		
	BET	Langmuir	
Cr ₃ (BTC) ₂	2340	2720	
Cu ₃ (BTC) ₂ ^a	1944	2260	
Zn ₃ (BTC) ₂	collapsed		
Mo ₃ (BTC) ₂ ^b	1280	2010	
Mo ₃ (BTC) ₂	1800	2100	

^a J. Am. Chem. Soc. **2006**, 128, 3494 ^b J. Mater. Chem. **2006**, 16, 2245

- Preparation of Cr₃(BTC)₂ is new and activation of Mo₃(BTC)₂ is improved
- Enables comparison of H₂ binding at the open M^{II} coordination sites

H_2 Uptake in $M_3(BTC)_2$ (M = Cr, Mo)

- First assessment of strength of H₂ binding to a Cr²⁺ center
- Expect better results for Co²⁺ and Ni²⁺ owing to a smaller ionic radius
- Attempts to synthesize analogues with other metal ions are underway

H₂ Uptake in Mg₂(DOBDC)

Matzger et al. J. Am. Chem. Soc. 2008, 130, 10870

- Open Mg²⁺ sites lead to an isosteric heat of adsorption as high as 12.8 kJ/mol
- Neutron diffraction (Craig Brown, NIST) shows Mg···D₂ distance of 2.5 Å

Calculation of Substituent Effects

Metal chosen as Cr⁰

Cr

R

Effect of Substituent (R)

 Electron-donating groups enhance binding, while electron-withdrawing groups reduce binding

-Tunability is 7% of binding

–Energies are for three bound H₂ molecules

- Correlates with back-donation, electrostatics
- Quantitative information; qualitative insight

-BDC²⁻ substituents can fine-tune binding

-Coarse-tuning must come from different metals

Effect of Metal Substitution

• Heavier isoelectronic elements:

 $(C_6H_6)Cr(H_2)_3$ binding per H2 of 68 kJ/mol $(C_6H_6)Mo(H_2)_3$ binding per H2 of 84 kJ/mol

• Lighter transition elements:

 $(C_6H_6)Cr(H_2)_3$ binding per H2 of 68 kJ/mol $(C_6H_6)Ti(H_2)_4$ binding per H2 of 32 kJ/mol

• Shows coarse tuning is possible

Still need to examine synergy of these effects

Computational Study of H₂ Binding in Cu-BTT

[Cu₄X(N₄CH)₈]⁻ fragment

ωB97X-D/6-31G* calculations:

Х	E/kJ/mol	
F	-10.9	
CI	-10.9	
Br	-13.0	
Ι		

- Measurements of H₂ binding energy within HCu[(Cu₄Cl)₃(BTT)₈] underway
- We will attempt to synthesize HCu[(Cu₄Br)₃(BTT)₈]

Computational Study of H₂ Binding in "Zn-BTT"

[Zn₄X(N₄CH)₈]⁻ fragment

ωB97X-D/6-31G* calculations:

Х	E _{Cu} /kJ/mol	E _{zn} /kJ/mol
F	-10.9	-13.8
CI	-10.9	-15.9
Br	-13.0	-16.3
I		

- Suggests significant improvement in binding energy for Zn-BTT frameworks
- We will therefore attempt to synthesize $Zn_3[(Zn_4Cl)_3(BTT)_8]_2$

Destabilization of Metal Hydrides

- Attempts at alloying of Mg in order to reduce ΔH
- Success in partial substitution to form $Mg_{1-x}A_x$ (A = Mn, Fe, Ni)
- Some increases in plateau pressures, but poor kinetics
- Attempts to substitute Na and Li for Mg are underway

Addition of MgF₂ Enhances Utilization of MgH₂

- MgF₂ slows desorption, but increases amount desorbed despite added weight
- Fluoride is distributed over particle surface; no evidence for bulk substitution (XRD)

Fluoride Effect Persists through Repeated Cycling

MgH₂ + 3 mol% MgF₂ after 2nd desorption @ 300° C

Without fluoride, sintering and coarsening reduce surface area and contribute to Mg isolation High-resolution TEM shows sharp faceting and marked inhibition of Mg grain growth in fluoridecontaining samples.

Best results are for 3 mol% MgF₂ added

 $\rm MgH_2$ after 2nd desorption @ 300° C

Metal Catalyst Activity not Inhibited by Fluoride

Activity of added vanadium not inhibited by the presence of fluoride

Good utilization at 250 °C

Still below 1 wt % at 200 °C

5wt .% V+ MgH₂ milled for 2hrs(300 rpm) 1 mol % MgF₂ added (600 rpm for 1hr)

- Future work: higher energy milling and alternative fluoride sources
- In addition, the effect of fluoride addition on ternary hydrides will be studied