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Overview

Project start: 12/1/04
Project end: 11/30/09
Percent complete: 70%

Identify new materials 
enabling a hydrogen storage 
system achieving:

– 2 kWh/kg (6 wt %)
– 1.5 kWh/L (0.045 kg/L)
– 4 $/kWh

Total funding expected: $2.9M
– $1.8M from DOE to UC Berkeley
– $600k from DOE to LBNL
– $500k in cost-sharing

Funding FY08: $600k
Funding FY09: $567k

Timeline

Budget

Barriers

ChevronTexaco
General Motors Corporation
Electric Power Research     
Institute

Partners
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Overall Program

Synthesis of porous polymers (Fréchet)

Synthesis of porous coordination solids (Long)

Calculations of H2 binding energies (Head-Gordon)

Synthesis of destabilized hydrides (Richardson) 

H2 storage characterization instrumentation (Mao) 

Metal/metal hydride nanocrystals (Alivisatos)

Synthesis of nanostructured boron nitrides (Zettl)

Theory for boron nitride materials (Cohen and Louie)

Part I*
(EERE)

Part II
(BES)

*Note that the results presented here are solely from Part I, which is funded through EERE
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H2 Adsorption in a Hypercrosslinked Polymer
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Hypercrosslinked Polyaniline

Polyaniline Reagent Reactions Product

Crosslinked 
polyaniline

Ullman 1

Buchwald

Ullman 2

Reaction Surf. area, m2/g
Langmuir

Pore volume, mL/g    
Total                Nano

Ullman 1 (dibromo) 156 0.13 0.03
Ullman 2 (diiodo) 96 0.04 0.01
Buchwald (diiodo) 343 0.25 0.13
Buchwald (tribromo) 368 0.25 0.11
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Size Exclusion of Gases in Ultrananopores

Surface area, m2/g

BET/N2 Langmuir/H2

Buchwald (tribromo) 157 354
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Nanoporous Nitrogen-Containing Polymers

1,4-Diaminobenzene Reagent Reaction Product

Crosslinked aromatic rings

Buchwald

Reagent Surf. area, m2/g
Langmuir

Pore volume, mL/g    
Total            Nano            Ultra       

Diiodobenzene 192 0.01 0.01 0.09
Tribromobenzene 384 0.13 0.11 0.06
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Stronger H2 Adsorption
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Hypercrosslinked Polypyrrole
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Increased H2 Adsorption Capacity
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Size Exclusion of Gases in Ultrananopores
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Hydrogen Storage in Completely-Activated MOF-5

Currently best known material for cryogenic hydrogen storage at 77 K

Performance at 298 K is poor owing to weak interaction of H2 with surface 

Zn4O(BDC)3

77 K

pure H2 gas

298 K
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A Beryllium-Based Metal-Organic Framework

COOH

COOH

HOOC

Be(NO3)2 (aq)

Δ

H3BTB
Be12(OH)12(BTB)4

Unprecedented structure with Be12(OH)12 rings and 12 and 15 Å channels

Nitrogen adsorption isotherm affords BET surface area of 4020 m2/g   

+

DMSO/DMF
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Low-Pressure H2 Uptake in Be12(OH)12(BTB)4

Weak interaction of H2 with surface, as desired for cryogenic storage 

At pressures up to 100 bar, expect gravimetric storage above MOF-5 

77 K

87 K

Q
st

77 K

87 K
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Strong H2 Binding in MOF-5 Functionalized with Cr0

with Y. Liu, C. Brown, and D. Neumann at NIST
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Orbital interactions lead to strongly-bound H2 complex that is too stable

Need to generate charge-induced dipole interaction of 15-20 kJ/mol 

2

ΔH = 78 kJ/mol
(Head-Gordon et al.)
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Room Temperature H2 Uptake in Mn-BTT*

Exposed Mn2+ sites lead to isosteric heat of adsorption of up to 10.1 kJ/mol  

Need to increase strength of binding and concentration of open metal sites 

Mn3[(Mn4Cl)3(BTT)8]2·20MeOH
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*GM-supported research
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Paddlewheel Frameworks 

M3(BTC)2 (M = Cr, Cu, Zn, Mo)

Preparation of Cr3(BTC)2 is new and activation of Mo3(BTC)2 is improved    

Enables comparison of H2 binding at the open MII coordination sites

surface area (m2/g)
BET Langmuir

Cr3(BTC)2 2340 2720
Cu3(BTC)2

a 1944 2260
Zn3(BTC)2 collapsed

Mo3(BTC)2
b 1280 2010

Mo3(BTC)2 1800 2100

a J. Am. Chem. Soc. 2006, 128, 3494
b J. Mater. Chem. 2006, 16, 2245
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H2 Uptake in M3(BTC)2 (M = Cr, Mo)

First assessment of strength of H2 binding to a Cr2+ center 

Expect better results for Co2+ and Ni2+ owing to a smaller ionic radius

Attempts to synthesize analogues with other metal ions are underway 

77 K

87 K

M = Cr
M = Cr

M = Mo
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H2 Uptake in Mg2(DOBDC) 

77 K

Mg2(DOBDC)
Matzger et al. J. Am. Chem. Soc. 2008, 130, 10870

Open Mg2+ sites lead to an isosteric heat of adsorption as high as 12.8 kJ/mol   

Neutron diffraction (Craig Brown, NIST) shows Mg···D2 distance of 2.5 Å

87 K
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R

CrCalculation of Substituent Effects

electrostatics

back-donation

forward donation

Metal chosen as Cr0
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R

MEffect of Substituent (R)

Electron-donating groups enhance binding, while 
electron-withdrawing groups reduce binding

–Tunability is 7% of binding

–Energies are for three bound H2 molecules

Correlates with back-donation, electrostatics

Quantitative information; qualitative insight

–BDC2- substituents can fine-tune binding

–Coarse-tuning must come from different metals
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R

MEffect of Metal Substitution

Heavier isoelectronic elements:
(C6H6)Cr(H2)3 binding per H2 of 68 kJ/mol

(C6H6)Mo(H2)3 binding per H2 of 84 kJ/mol

Lighter transition elements:
(C6H6)Cr(H2)3 binding per H2 of 68 kJ/mol

(C6H6)Ti(H2)4 binding per H2 of 32 kJ/mol

Shows coarse tuning is possible
Still need to examine synergy of these effects
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Computational Study of H2 Binding in Cu-BTT  

[Cu4X(N4CH)8]- fragment 

Measurements of H2 binding energy within HCu[(Cu4Cl)3(BTT)8] underway

We will attempt to synthesize HCu[(Cu4Br)3(BTT)8] 

X E/kJ/mol

F -10.9

Cl -10.9

Br -13.0

I --

ωB97X-D/6-31G* 
calculations:
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Computational Study of H2 Binding in “Zn-BTT”  

[Zn4X(N4CH)8]- fragment 

Suggests significant improvement in binding energy for Zn-BTT frameworks

We will therefore attempt to synthesize Zn3[(Zn4Cl)3(BTT)8]2

ωB97X-D/6-31G* 
calculations:

X ECu/kJ/mol EZn/kJ/mol

F -10.9 -13.8

Cl -10.9 -15.9

Br -13.0 -16.3

I -- --
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Destabilization of Metal Hydrides

Attempts at alloying of Mg in order to reduce ΔH

Success in partial substitution to form Mg1-xAx (A = Mn, Fe, Ni)

Some increases in plateau pressures, but poor kinetics

Attempts to substitute Na and Li for Mg are underway
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Addition of MgF2 Enhances Utilization of MgH2

• Powders milled  
1 hr @400 rpm

• No transition metal 
catalyst added

F

Mg

Elemental Mapping (EELS)

MgF2 slows desorption, but increases amount desorbed despite added weight

Fluoride is distributed over particle surface; no evidence for bulk substitution (XRD)
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Fluoride Effect Persists through Repeated Cycling

663 K

0 bar

MgH2 after 2nd desorption @ 300° C

MgH2 + 3 mol% MgF2 after 2nd 
desorption @ 300° C

Best results are for 3 mol% MgF2 added

High-resolution TEM 
shows sharp 
faceting and marked 
inhibition of Mg grain 
growth in fluoride-
containing samples.

Without fluoride, 
sintering and 
coarsening reduce 
surface area and 
contribute to Mg 
isolation



28

Metal Catalyst Activity not Inhibited by Fluoride

Future work: higher energy milling and alternative fluoride sources

In addition, the effect of fluoride addition on ternary hydrides will be studied

5wt .% V+ MgH2 milled for 2hrs(300 rpm) 
1 mol % MgF2 added (600 rpm for 1hr )

Activity of added vanadium 
not inhibited by the presence 
of fluoride

Good utilization at 250 °C

Still below 1 wt % at 200 °C
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