

2009 DOE Hydrogen Program Low-Cost High-Efficiency High-Pressure H₂ Storage

Quantum Fuel Systems Technologies Worldwide Inc. Date: May 20th 2009 Carter Liu, PhD

> Project ID # STP_04_Liu

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 07/2008
- Project end date: 01/2010
- Percent complete: 36%

Barriers

- Materials development
- Manufacturability
 - Blow molding/injector molding capability

Budget

- Total budget: \$2,865,932
- DOE share: \$1,438,733
- QT share: \$1,432,199
- FY08 funding: \$0
- Funding for FY09: \$226,476

Partners

None currently

Project Objectives- Relevance

Improve the cost and weight efficiency of Type IV compressed H₂ storage vessels to approach the 2010 DOE targets by reducing raw material costs through material development and design & manufacturing parameter modifications.

The project is split into the following tasks:

- Plastic liner development
- Metal fitting development
- Optimization of carbon fiber composite usage

Milestones

Month	Milestone		
07/08-11/08	Program Kick-off Liner material literature review; 100% complete		
11/08-01/09	Liner material property characterization/evaluation; 90% complete Investigate blow molding processes to find appropriate vendors & manufacture "liners"; 60% complete		
01/09-04/09	Liner test evaluations; 60% complete Metal fitting material candidate literature review; 100% complete Metal fitting to liner interface design & FEA; 30% complete Composite optimization literature review; 100% complete		
04/09-10/09	Complete liner evaluations Evaluate metal fitting candidate materials for hydrogen compatibility Composite Tank fabrication		
10/09-01/10	EIHP tests to evaluation of new boss-liner assembly EIHP tests to evaluate composite optimization and process development		
01/10	Provide cost model Final report preparation & submittal (inclusive of EIHP results)		
05/10	Merit Review		

Approach Outline

Each task aims to reduce cost and weight to meet DOE 2010 targets:

Liner Development

- Materials study (H₂ compatibility; permeation; toughness)
- Liner-Metal interface design (new design)
- Investigation of mass-production methods (blow-molding)

Metal Fitting Development

- Metal fitting material investigation
- Stress analysis
- Liner-Metal interface redesign (new design)

Composite Design Optimization

- Manufacturing process evaluation
- Further optimization of composite design to improve fiber translation¹ and reduce composite usage

¹ translation= reinforcing efficiency of carbon fibers

Accomplishments-Baseline

Material Cost Distribution: 129L 70 MPa Tank (Baseline)

Material Weight Distribution: 129L 70 MPa Tank (Baseline)

Accomplishments- Current

Material Cost Distribution: 129L 70 MPa Tank (2008)

Material Weight Distribution: 129L 70 MPa Tank (2008)

1% 1% 38% 38% 60%

Current Tank Material Cost Distribution

Accomplishments- Current tank

Tank Nominal Capacity: 129 Liter, 5.6 kg H₂

Raw Material Cost (62% of baseline [previous version] tank):

Composite Usage (60%) + Liner (1%) + Metal Fittings (38%)

Tank Weight (80% of baseline [previous version] tank):

Composite Usage (85%) + Liner (9%) + Metal Fittings (5%)

Metal Fittings = Polar Boss + Adapter + Valve Composite Usage = Carbon fiber + Resin matrix

Current Efficiency: 0.08 kWh/\$: Energy / Cost 2.36 kWh/kg: Energy / Mass 1.72 kWh/L: Energy / Volume

2010 DOE targets: System energy cost= 0.25kWh/\$ System gravimetric capacity= 2.0kWh/kg System volumetric capacity= 1.5kWh/L

Data based on current manufacturing cost/mass/volume for a **single** tank. There are no components in addition to what is listed above.

Accomplishments- Tank Cross-section

129L tank polar end close-up cross section

129L tank cross section

Technical Accomplishments: Liner Development

- Evaluated blow-molded plastics: HDPE, PET, PEN, POM, Multi-layered
 - Toughness
 - Tensile properties
 - Durability
 - Permeability
- Manufactured and evaluated plastic liners out of the 1st
 molding iteration according to EIHP standards: Pressure
 Cycle Fatigue, Permeation, Boss-Liner seal

Technical Accomplishments: Metal Fittings

- Investigated different materials (literature review);
- Design development
 - Material choices:
 - Stainless steel
 - Aluminum alloys
 - Component elimination: new design= valve & boss only
 - Geometry reduction

Future Work: Liner Development

Preform Molding & Direct Heat Conditioning Station

- Blow molding process iteration for improved:
 - toughness and fatigue resistance
 - heat resistance in the anneal process
 - thickness distribution
 - barrier performance to hydrogen gas

Nylon

-PET

Future Work: Liner Development

- Liner interface design to metal fitting development: effective seal against→
 - pressure
 - temperature fluctuation
 - vibration
 - automotive fluid corrosion
 - torque applied during operation

Future Work: Metal Fitting Development

 Statistical evaluation of polar boss hydrogen compatible metals to reduce material costs

 $Y = \beta_0 + \beta_1 T + \beta_2 P + \beta_3 \sigma + \beta_4 t + \beta_5 TP + \beta_6 P\sigma + \beta_7 T\sigma + e$

T: exposure temperature in H₂

- P: pressure
- σ: pre-stress level
- t: charging time
- TP, Tσ, Pσ: interaction terms

e: error

Target = 20% of current metal fitting cost; 50% weight savings vs. start-of-project value

Future Work: Metal Fitting Development

- Design and evaluate the liner-metal interface, with the aim to eliminate the metal adapter & reduce part size
- Stress analysis through FEA
- Concurrent tank valve development

Future Work: Composite Optimization

- Composite translation efficiency improvement
 - Manufacturing process
 - Fiber lay-out
- Optimize fiber lay-out design and FEA stress analysis accuracy
 - Characterize the appropriate surface curvature to the software
 - Calculate the best surface fiber orientation with certain principal radii of curvature
 - Investigate the element types used in FEA

Future Work: Composite Optimization

- Evaluate the fiber translation efficiency effects on manufacturing parameters and optimize them correspondingly
 - Bandwidth and position distribution: balance between accuracy and winding speed
 - Balance between fiber tow tension and surface curvature to reach the desired compaction
 - Resin appropriate cure profile for less residual stress
 - Resin bath temperature control

Target= 25% reduction in composite usage vs. start-of-project value

Future Work

Material Cost Distribution: 2010 Target 129L 70 MPa Tank

Material Weight Distribution:

2010 Target 129L 70 MPa Tank

QUANTUM

Future Work

Tank Nominal Capacity: 129 Liter, 5.6 kg H₂

Raw Material Cost (44% of current version tank):

Composite Usage (85%) + Liner (0.3%) + Metal Fittings (15%)

Tank Weight (87% of current version tank):

Composite Usage (86%) + Liner (10%) + Metal Fittings (3%)

Metal Fittings = Polar Boss + Valve Composite Usage = Carbon fiber + Resin matrix

Target Efficiency: 0.19 kWh/\$: Energy / Cost 2.72 kWh/kg: Energy / Mass 1.72 kWh/L: Energy / Volume

2010 DOE targets:

System energy cost= 0.25kWh/\$ System gravimetric capacity= 2.0kWh/kg System volumetric capacity= 1.5kWh/L

Data based on DOE volume of 500k units/year for a **single** tank (metal fittings, composite & liner). There are no components in addition to the one tank for this specific project.

Project Summary

Relevance	Optimization of current manufacturing processes for low cost H ₂ storage vessels	
Approach	Liner and metal fitting development	
, pprodon	Carbon fiber translation optimization	
Proposed	Liner development (material & process)	
Mork	Metal fitting development (material and interface design)	
VVUIK	Carbon fiber manufacturing process design of experiment (optimization)	

Project Progress						
	Current	Target	DOE 2010 Goals			
Cost	0.08 kWh/\$	0.19 kWh/\$	0.25kWh/\$			
Weight	2.36 kWh/kg	2.72 kWh/kg	2.0kWh/kg			

