

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems

Joseph W. Reiter, Jason A. Zan, Philip R. Wilson, and Channing C. Ahn (Caltech)

Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA 91109-8099

May 20, 2009

U.S. Department of Energy Energy Efficiency and Renewable Energy

> Project ID # stp_10_reiter

This presentation does not contain any proprietary or confidential information

Timeline

- Project start date: February, 2009
- Project end date: January, 2014
- % complete: 3% (Duration)

Budget

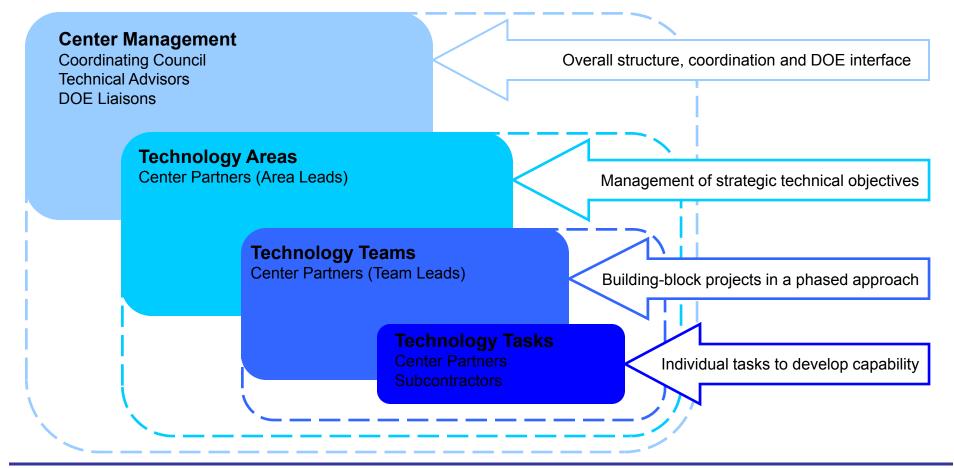
- Expected total project funding:
 - \$3.195M (DOE)
 - \$0.03M (Caltech)
- Funding received in FY08:
 - \$0K (DOE)
- Funding received for FY09:
 - \$0K (DOE)

Partners

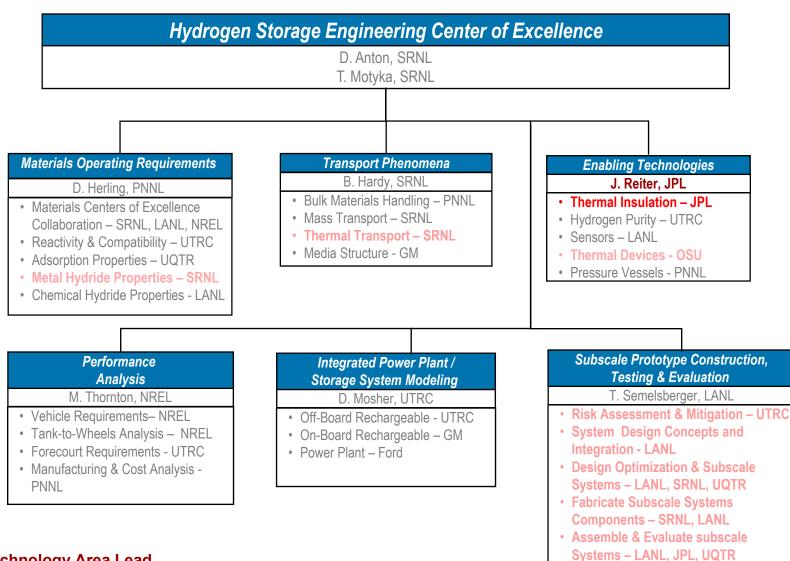
Caltech (subcontract)

Barriers/System Targets (2015)

- A. System Weight and Volume
 - $5.5 \ \text{\%wt}_{\text{sys}}, \ 55 \ \text{gH}_{2}/\text{kg}_{\text{sys}}, \ 40 \ \text{gH}_{2}/\text{L}_{\text{sys}}$
- C. Efficiency
 - 90% on-board/60% off-board
- D. Durability/Operability
 - <1% degradation @ 1500 cycles, etc.
- E. Charging/Discharging Rates
 - 3.3 min fill, 0.02 g/kW-s minimum full flow
- G. Materials of Construction
- H. Balance-of-Plant Components
- I. Dispensing Technology
- J. Thermal Management



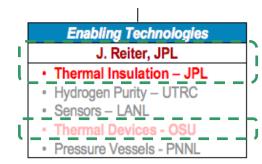
Overview: HSECoE Organizational Approach


- The organization of HSECoE is built around a modular, hierarchical concept based on Technology Areas/Teams/Tasks
- This organization will help HSECoE meet objectives by:
 - Maintaining effective tasking within a diverse team
 - Managing technology development in an emerging field

Overview: JPL's Roles in HSECoE

•Technology Area Lead

- Technology Team Lead
- Technology Task Support



• JPL Task Plan, including milestones, deliverables, and Go/No-Go points (excerpted from HSECoE Proposal, 2009 Annual Operating Plan, or other materials where appropriate)

JPL					Phas	se 1					P	nase	2				Р	hase	3		
Task		20	09 (0	(ג		2010) (Q)			2011	I (Q)			2012	? (Q)			2013	3 (Q)		
No.	Description	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1
1a	Media & safety risk identification				M1																
1b	Media & safety evaluation and mitigation													M7							
1c	Identify and address media performance gaps							M2					M8	D3							
1d	Evaluate engineering impact of candidate media													M9							
2a	Evaluate pressure/containment tech.							M3							D4						
2b	Assist evaluation of H2 purity/sep. tech.							M4							D4						
2c	Identify/evaluate/select passive thermal tech.							M5							D4						
2d	Enabling Tech. gap assessment/mitigation							D1	G1												
3a	Model novel HX/MX approaches									M10		G2									
3b	Design and fabricate thermal test articles											M11									
3c	Perform validation test studies												M12	1							
3d	Model platform evaluation and downselect.												M13								
3e	Provide model tech. gap assessment/mitigation												D5								
4a	Propose/evaluate system engineering concepts								M6												
4b	Develop Go/No-Go criteria for sys. concepts							D2													
4c	Provide tech. gap assessments for sys. concepts												M14								
4d	System concept evaluation and downselect.															D6					
4e	Develop draft test plans for prototype testing															M15					
4f	Develop Go/No-Go criteria for prototype plans															D7					
4g	Scale optimization/analysis for prototypes																M16				
4h	Provide eng. oversight for prototype design																M17				
-5a	Hazard assessment and mitigation for I&T																D8				
5b	Design/procurement for test facility																M18				
5c	Finalize test plan																	M19			
5d	Assemble prototype system components																	M20			
5e	Software development																		M21		
5f	Construct test facility																		M22		
5g	Integration and Test																			M23	
5h	Analyze, report, and archive data																				D9
5i	Decommission prototype and test stand																				M24

HSECOE JPL Task Area 1 - Adv. Technology Development

- JPL is the Technology Area Lead (*TAL*) for HSECoE's "Enabling Technologies" strategic technology area (*TA*)
 - This will be a major effort, dedicated to facilitating the evaluation of key technologies that serve as particular challenges to prototype development
 - As for other Technology Areas within HSECoE, the work will be managed via the Technology Team Leads (*TTLs*) that will directly interface at the task-level in each case
 - Within each Team, any number of individual tasks may be required to reach objectives
- Enabling Technologies JPL will also perform as TTL for Joe Reiter, JPL the "Thermal Insulation" task group, developing approaches for passive thermal Thermal Insulation Hydrogen Purity Sensors management of the storage D. Mosher, UTRC J. Reiter. JPL E. Brosha, LANL SRNL, PNNL, LANL vessel, thermal devices, and balance-of-plant components of the prototype system Thermal Devices Containment and Pressure Vessels K. Drost, OSU JPL, SRNL, LANL, UTRC K. Simmons, PNNL Lincoln, SRNL, UTRC A breakdown of the "Enabling Technologies" TA is provided in the form of Quad Charts for each of the Technology Teams led by JPL an other Center Partners within this structure

et Propulsion La

California Institute of Technology

Approach: *"Enabling Technologies" TAL Quad Chart*

Technology Area: Enabling Technologies		Area Lead: J. Reiter, JPL					
		March 2009 (v2					
<u>O</u> ł	ojectives:	Accomplishments:					
t	Provides a framework for identifying and addressing echnology gaps as well as incorporating new echnologies into the Center						
	Survey and evaluate existing state-of-art technologies for ncorporation into Center design activities						
	Provide capabilities as a "technology working group" hroughout Center operation						
C	dentify and recommend approaches to technology development in an ongoing fashion in order to meet echnical challenges in key areas						
Ke	y Milestones:	Issues:					
1.	Develop technology flow diagram(s) and identify cross- cutting relationships within CoE (5/09)	 Will identify efficient collaborative methods for sharing progress quickly across team 					
2.	Perform initial criteria evaluations, SOA surveys, gap identification and mitigation approach (8/09)	 Must work closely with Center modeling teams/partners in order to accomplish some key goals 					
3.	Perform initial testing against trade-space model results for key technologies (3/10)						

Approach: *"Thermal Insulation" TTL Quad Chart*

Technology Area: Enabling Technologies Technology Team: Thermal Insulation		Area Lead: J Reiter, JPL Team Lead: J. Reiter, JPL				
		March 2009 (v2)				
<u>Ob</u> j	jectives:	Accomplishments:				
pa • De f(g too	entify notional requirements, capabilities, and gaps for assive thermal management in storage systems evelop high-level trade space performance models geometry,material,temperature,time,etc.) as evaluative ol (interface with HSECoE modeling groups) valuate, recommend, and incorporate candidate oproaches for engineered systems (full- and sub-scale)					
Key	/ Milestones:	Issues:				
1.	Draft CoE info flow/relationships (JPL) (5/09)	 Identify model framework for trade space study 				
2.	Complete initial SOA survey/lit search (JPL) (8/09)					
3.	Initial weighted trade space model results (JPL) (12/09)					
4.	Initial model validation experiments for MH system (JPL) (3/10)					
- - - - - - - - - - - - - -	ISECoE					

Approach: "Hydrogen Purity" TTL Quad Chart

		March 2009 (v2
		March 2009 (v2)
<u>Ob</u> j	jectives:	Accomplishments:
	evelop system methods to improve discharged hydrogen irity / quality for acceptable PEM fuel cell durability.	
	stablish procedures for assessing hydrogen purity – oderate level & PEM FC durability level.	
	ollaborate with material CoEs to identify existing purity ata / concerns & gaps for future testing.	
	valuate and advance separation method concepts as/gas and gas/particulate).	
	corporate top separation candidate(s) into storage stem designs.	
Key	/ Milestones:	Issues:
1.	Determine current purity concerns in materials CoE and select top 2 to 3. (All) (6/09)	 Confirm partner differentiation / roles –UTRC: composite Pd membranes
2.	Compare initial evaluations of separation approaches. (All) (12/09)	 HSM: polymer membranes SRNL: metallic membranes TBD: molecular sieves & adsorbants.
		 Measurement: LANL & PNNL PEM FC can be affected by very low levels of impurities. Storage materials & impurities are TBD; performance of some separation methods can be highly influenced.

Approach: "Sensors" TTL Quad Chart

Тес	hnology Area: Enabling Technologies hnology Team: Sensors	Area Lead: J. Reiter, JPL Team Lead: E. Brosha, LANL
		March 2009 (v2)
<u>Ob</u>	jectives:	Accomplishments:
sti sti In er	entify and evaluate novel devices and methods and for orage system instrumentation (SOC, fluidic, thermal, ructural, etc.) terface with other CoE TAs as necessary for ngineering impact of sensor devices (compatibility, etc) ecommend sensor technologies and instrumentation oproaches for engineering design (full- and sub-scale)	
Ke	<u>y Milestones:</u>	Issues:
1.	Identify initial criteria matrix: data type,technology class, etc. (LANL) (5/09)	 Need to identify additional collaborators/contributors Must be able to rapidly evaluate sensor technologies
1. 2.	class, etc. (LANL) (5/09) Complete initial SOA survey/lit search (LANL) (8/09)	
1.	class, etc. (LANL) (5/09)	 Must be able to rapidly evaluate sensor technologies across a broad tech base by evaluating literature search

 $\mathbf{ }$

Approach: *"Thermal Devices" TTL Quad Chart*

Technology Area: Enabling Technologies Technology Team: Thermal Devices		Area Lead: J. Reiter, JPL Team Lead: K. Drost, OSU				
		March 2009 (v3)				
<u>Ob</u>	jectives:	Accomplishments:				
	valuate novel heat exchange/transfer technologies and evices required for operation of an H ₂ storage system					
fit	entify/develop tools for assessing performance and ness of candidate technologies and devices (mass, plume, power, cost, complexity)					
	valuate, recommend, and incorporate candidate devices r engineered systems (full- and sub-scale)					
	rovide ongoing evaluative capability for emergent chnologies/requirements					
Ke	v Milestones:	Issues:				
	Compile initial list of potential implementations (All)	 Must develop an understanding of scale issues with 				
1.	(5/09)	regard to thermal performance at an early stage in the				
1. 2.						
	(5/09)	regard to thermal performance at an early stage in the				
2.	(5/09) Complete initial SOA survey/lit search (All) (8/09) Initial weighted trade space model results (SRNL)	regard to thermal performance at an early stage in the				
2. 3.	(5/09) Complete initial SOA survey/lit search (All) (8/09) Initial weighted trade space model results (SRNL) (12/09)	regard to thermal performance at an early stage in the				

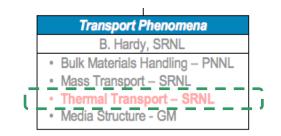
Approach: *"Pressure Vessels" TTL Quad Chart*

		March 2009 (v
<u>Ob</u>	jectives:	Accomplishments:
st	evelop tank designs for retaining storage material ructured beds: Absorber (cryogenic), Metal Hydride pressurized); Chemical hydride (ballast)	
	evelop model(s) and evaluate designs for cylindrical and onformal tank concepts	
in	ssess manufacturability and assembly w/ or w/o tegrated thermal management (i.e. heat exchange inction), including open/split tank designs	
	lentify and test novel resin/fiber/liner systems	
• B	uild and assemble prototype tanks	
Key	y Milestones:	Issues:
1.	Establish modeling approach and platform(s) (All) (6/09)	 Availability of high strength low cost fibers Toughened resin systems that cures below the liner
2.	Determine basic operational parameters (boundary conditions) for each system (PNNL, Lincoln) (9/09)	 softening point Material compatibility Install/socharge tapk
3.	Complete initial design concept analysis w/o internal thermal management function (All) (12/09)	 Install/recharge tank Disposition of draft US standards for H₂ storage vessels

Approach: JPL Task Area 2 - Media/Material Evaluation

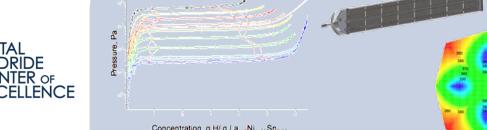
- JPL has a role in the evaluation of material properties under the Technology Area led by Center Partner PNNL
 - Within the context of compatibilities, reactivities, and the engineering properties of candidate materials, JPL can contribute assessments and expertise

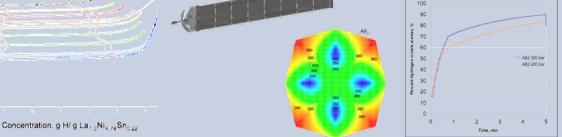
- Close collaboration with SRNL, UTRC, and other CoE partners to respond to assessment needs, especially as they shift (Phase 1/2)
 - Some direction from DOE/CoE expected regarding this effort
- Will assess relevant data regarding issues relating to safety, risk, compatibility, etc. as R&D requirements drive the "feedback loop"
- May leverage expertise with metal/complex hydrides as well as hydrogen sorption materials via collaboration with Caltech



HSECoE

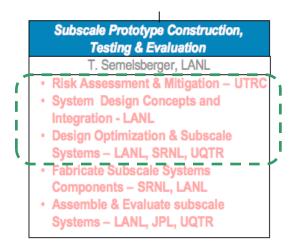
Approach: HSECoE JPL Task Area 3 - Thermal Modeling & Validation




- JPL will utilize current in-house modeling capabilities to support overall Center activities to evaluate an predict heat-exchange (HX) characteristics of component designs
- SINDA/FLUINT model platform with custom capabilities • (charging/discharging, non-equilibrium PCT curves, H2 flow enthalpy accounting, alloy properties, etc.)

Hydrogen Concentration vs Time AB2 Alloy

Originally developed during engineering activities within the Metal Hydrides Center of Excellence (MHCoE)

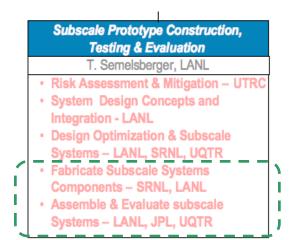

Theoretical PCT development, SINDA/Excel Thermal modeling and performance analysis

- Activity includes capabilities for model/sub-model validation via bench-testing of discrete HX/MX components made at JPL with rapid turnaround
 - Can provide validation paths for models developed either at JPL or by other Center Partners
- This is a gated activity; a Go/No-Go milestone exists in Phase 2 for downselecting ٠ candidate approaches based on their performance
 - Criteria and candidate list is expected to evolve based on Phase 1 milestoning

Approach: JPL Task Area 4 - Prototype Concept Engineering

- Activity focuses on metal/complex hydride and hydrogen sorption systems
- JPL will collaborate with LANL as Technology Area Lead and other Center Partners in Phase 2, in advance of overall DOE/CoE downselect
- Will provide system engineering support:
 - Scale optimizations for candidate system approaches, as well as component designs
 - Risk assessment studies (construction, assembly, test, operation, etc.)
 - Propose risk mitigation in advance of system concept downselect
- Will contribute much of the output of the Enabling Technologies team toward assisting DOE and the Center with the Phase 2 system concept downselect; *much of this activity will be in an emergent/evolving mode*

HSECoE


Approach: JPL Task Area 5 - Prototype Testing and Evaluation

- This activity is JPL's main role in Phase 2/3 and supports the entire Center
 - Presupposes the selection of a metal-hydride based prototype demonstrator, although some contributions may be made in the event a sorption system is still selected
- Utilizes a currently active fabrication/testing/characterization laboratory at JPL with available space for ~2 test-stands
 - Hydrogen Storage Engineering Laboratory (HSEL)
- Tasks aligned under this objective are currently scoped to run from Q2FY2012 through Q4FY2013; i.e., 1.5y +
- Selected subtasks:

HSECoE

- Develop test procedures and test safety plan
- Build test stand, develop test software
- Assemble system/fill/closeout hydride storage vessels
- Integrate system with test facility
- Analyze and disseminate data
- Disposition storage prototype at conclusion of testing

Testing an integrated MH-bed/PEM-FC hybrid power system on a facility within JPL's Hydrogen Storage Engineering Lab (HSEL)

- JPL HSECoE effort is organized and off to a successful start
- Center Kick-Off Meeting held in Washington DC (12/08)
- Tech Team Meeting attended by Center Partners in Washington DC (12/08)
- Initial Center Face-to-Face Meeting held in Golden, CO (2/09)
- JPL Task Plan and draft milestones completed for Phase 1; "100-day" scope finalized during F2F meeting

- JPL efforts on Thermal Insulation task are already underway; the next steps are to complete initial state-of-art assessments and propose approaches to gap determination and mitigation
- Define communications plan and information flow for "Enabling Technologies" TA, as compelled by 100-day plan; obtain initial status of collaborating Center Partners in charge of sub-Teams
- Determine current status of SINDA modeling/validation effort as originally put "onhold" during the cessation of engineering "Task E" under MHCoE, and adopt plan forward for model efforts during HSECoE Phase 2