

Development of Improved Composite Pressure Vessels for Hydrogen Storage

Norman L. Newhouse, Ph.D., P.E. Lincoln Composites 20 May 2009 Project ID# STP 15 Newhouse

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Phase 1 start 1 Feb 2009
- Phase 1 end 31 Jan 2011
- 3% complete

Budget

- Project funding \$2,000,000
- Phase 1 funding \$761,466
 - DOE share \$609,156
 - Contractor share \$152,290
- FY08 = \$ 0
- FY09 = \$300,000 (plan)

Barriers

- Barriers addressed
 - A. System Weight and Volume
 - B. System Cost
 - G. Materials of Construction
- Targets (2010)
 - Gravimetric capacity > 6%
 - Volumetric capacity > 0.045 kg H_2/L
 - Storage system cost < $133/kg H_2$

Partners

Technologies

SRNL, PNNL, LANL, JPL, NREL, UTRC, GM, Ford, LC, Oregon State Univ, UQTR

Project lead = Don Anton,
 SRNL SRNL

Objectives

 Meet DOE 2010 and 2015 Hydrogen Storage Goals for the storage system by identifying appropriate materials and design approaches for the composite container

	<u>2010</u>	<u>2015</u>
Gravimetric capacity	> 6%	> 9%
Volumetric capacity	> 0.045 kg H ₂ /L	> 0.081 kg H ₂ /L
Storage system cost	< \$133/kg H ₂	< \$67/kg H ₂

- Maintain durability, operability, and safety characteristics that already meet DOE guidelines for 2010 and 2015
- Work with HSECoE Partners to identify pressure vessel characteristics and opportunities for performance improvement
- Develop high pressure tanks as are required to:
 - Enable hybrid tank approaches to meet weight and volume goals
 - Allow metal hydrides with slow charging kinetics to meet charging goals

Phase 1 Approach

- Establish and document baseline design, materials, and manufacturing process
- Evaluate potential improvements for design, material, and process to achieve cylinder performance improvements for weight, volume, and cost
- Down select most promising engineering concepts
- Evaluate design concepts and ability to meet Go/No-Go requirements for moving forward
- Document progress in periodic reports and support HSECoE Partner meetings and teleconferences

Phase 1 Milestones

- Establish baseline design and identify options for improvement
- Document baseline design summary
- Report on Phase 1 evaluation of design, material, and process improvements
- Identify the of most promising engineering concepts
- Report on Phase 1 selection of most promising design, material, and process improvements
- Document revised baseline design summary
- Evaluate likelihood of composite container meeting system and DOE objectives

Progress – Baseline Design/Materials

- Design
 - Fiber reinforced composite structure
 - Plastic liner
 /permeation barrier
 - Metallic end bosses
 - 350 bar pressure capability

- Materials
 - Carbon fiber
 - Epoxy resin
 - HDPE liner
 - AA 6061-T6 bosses

- Reinforcing fibers with higher delivered strength per unit cost
 - Decreased weight, decreased cost, increased volume
 - Two higher strength commercial carbon fibers identified
 - Indicated 5%-10% higher strength
 - One is same cost as baseline, one is higher cost
- Resin systems with lower cost per unit volume
 - Reduced cost, but must be traded against performance and manufacturability

- Toughened resin systems that provide better damage tolerance, allowing thinner composite walls
 - Decreased weight, increased volume
 - Toughening agents for resin systems have been identified
 - ATBN has shown some promise in high energy impact testing
 - Additional materials have been identified for inclusion in study
- Resin systems with high temperature capability
 - Meet safety goals in case of accidental thermal excursion

- Decrease safety factor requirements for reinforcing fibers
 - Decreased weight, decreased cost, increased volume
 - Evaluate stress rupture, fatigue and damage tolerance characteristics further through Leader-of-the-Fleet testing
 - Leader-of-the-Fleet program has been drafted, is in review and comment by collaborators
 - Evaluate damage vs. impact to characterize safety and ability to remain in service after damage
 - Evaluate NDE as a means of monitoring the structural integrity, allowing thinner laminates and removal from service before rupture
 - Low cost AE sensors have been identified, are in evaluation for inclusion in LOTF program

- Liner materials with lower permeation and absorption
 - Thinner liner decreases weight, increases volume if envelope limited, but may increase cost
 - Less absorption reduces potential for contamination
 - Permeation testing with $5\%H_2 / 95\%N_2$ is being conducted
 - Baseline results for HDPE liner material
 - Filled HDPE material showed no benefit
 - Filled alternate material showed 90% 95% reduction in permeation, need to confirm other properties of alternate material
 - Additional filled materials are in process
 - Coatings are being evaluated

- Stronger boss materials, allowing thinner sections
 - Reduced cost and weight, increased volume
 - Alternate boss materials are being evaluated
 - AA7075 has significantly higher yield and tensile strength than AA6061
 - 316SS has higher tensile strength and temperature capability than AA6061
- Manufacturing processes that increase throughput
 - Decreased overhead costs

Accomplishments

- Kick-off meeting in December 2008, Washington DC
- IP agreement signed January 2009
- Face to Face Meeting February 23-25, 2009, Golden, CO
- Safety plan completed May 1, 2009

Collaborations

Collaborations

Collaborations

Future Work

- Continue progress on evaluating potential improvements
- Down select most promising engineering concepts.
- Evaluate design against DOE 2010 and 2015 Hydrogen Storage Go / No Go Criteria
- Phase 2 continuation of container development in support of system requirements
- Phase 3 fabrication of subscale containers to support assembly of prototype systems for evaluation

Summary

- Lincoln Composites has initiated work under the DOE contract funding the HSECoE
- Design, material and process improvements have been identified that show potential to meet DOE 2010 and 2015 goals for the storage system
- Work is progressing on schedule with expectation of meeting go/no-go criteria to proceed to Phase 2
 - 4 of the DOE 2010 numerical system storage targets must be fully met
 - The status of the remaining numerical targets must be at least 40% of the target or higher

