

Chemical Hydrogen Storage Using Aluminum Ammonia-borane Complexes

Satish S. Jalisatgi, Jianguo Wu, M. Frederick Hawthorne

University of Missouri - Columbia May 20, 2009

STP_20_Hawthorne

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date Fiscal year 2005
- Project end date Fiscal year 2010
- Percent complete 80%

Budget

- Total project funding
 - DOE share \$ 1,250,000 (proposed)
 - Contractor share \$ 312,000
- Funding received in FY08 \$ 349,927
- Funding for FY09
 \$ 349,339

Barriers

- Barriers addressed
 - Weight and Volume
 - Flow Rate
 - Energy Efficiency
 - Cost
 - Regeneration Process

Partners

- DOE Center of Excellence for Chemical Hydrogen Storage
 - LANL
 - PNNL

Project Objectives

- Evaluate aluminum amidoborane derivatives as hydrogen storage candidates that can achieve DOE targets.
- In collaboration with Center Partners, develop efficient thermal dehydrogenation methods for hydrogen release from aluminum amidoborane derivatives.

$n \operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow	[Al(NB) ₃] _n (s) + 7.5 <i>n</i> H ₂ (g) (12.8 wt.% Hydrogen)
$n \operatorname{NH}_3\operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow	[Al(NB) ₃] _n (s) + 9n H ₂ (g) (13.4 wt.% Hydrogen)
$n \operatorname{LiAI(NH_2BH_3)_4}(s) \longrightarrow$	[LiAl(NB) ₄] _n (s) + 10 <i>n</i> H ₂ (g) (13 wt.% Hydrogen)
$n \operatorname{NH}_4[\operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_4]$ (s) \longrightarrow	[(Al(NB) ₄ NH] _n (s) + 11.5 <i>n</i> H ₂ (g) (14 wt.% Hydrogen)

• In collaboration with Center Partners, determine a suitable route for the regeneration of the spent material.

Milestones

Synthesize AI-AB complexes and their ammonia adducts	100% Complete
Conduct hydrogen release studies by thermal dehydrogenation process	100% Complete
Find a suitable route for the regeneration of AI-AB spent material.	80% Complete

Approach

Aluminum Amidoboranes

- Ammonia borane (AB) is a demonstrated source of chemical hydrogen storage and has material capacity of 20 wt. % hydrogen. It can potentially meet DOE performance parameters except for its regeneration from spent materials.
- Aluminum aminoborane complexes (AI-AB) and their derivatives have high hydrogen capacity and are capable of meeting DOE targets.
- The presence of AI center bonded to multiple AB might combine the efficiency of AB dehydrogenation with AI mediated hydrogenation process leading to better rates and thermodynamics.
- It is presumed that AI-AB complexes will decrease the enthalpy of hydrogen loss and undergo dehydrogenation at a lower temperature than AB alone.

Approach - Amidoboranes

Amidoboranes System Capacity:

- 1. NH_3BH_3 (s) \longrightarrow BNH_n (s) + 3 H_2 (g) (19.4 wt.% Hydrogen)
- **2.** $n \operatorname{LiNH_2BH_3}$ (s) \longrightarrow [LiNB]_n (s) + 2.5 $n \operatorname{H_2}$ (g) (13.5 wt.% Hydrogen)
 - $n \operatorname{LiNH}_2\operatorname{BH}_3$ (s) \longrightarrow [LiNBH]_n (s) + 2 $n \operatorname{H}_2$ (g) (10.9 wt.% Hydrogen)
- 3. $n \operatorname{NaNH_2BH_3}(s) \longrightarrow [\operatorname{NaNB}]_n(s) + 2.5n \operatorname{H_2}(g)$ (9.4 wt.% Hydrogen) $n \operatorname{NaNH_2BH_3}(s) \longrightarrow [\operatorname{NaNBH}]_n(s) + 2n \operatorname{H_2}(g)$ (7.5 wt.% Hydrogen)
- **4.** $n \operatorname{Ca}(\operatorname{NH}_2\operatorname{BH}_3)_2$ (s) \longrightarrow $[\operatorname{Ca}(\operatorname{NB})_2]_n$ (s) $+ 5n \operatorname{H}_2$ (g) (10 wt.% Hydrogen) $n \operatorname{Ca}(\operatorname{NH}_2\operatorname{BH}_3)_2$ (s) \longrightarrow $[\operatorname{Ca}(\operatorname{NBH})_2]_n$ (s) $+ 4n \operatorname{H}_2$ (g) (8 wt.% Hydrogen)
- 5. $n \text{ NH}_3 \text{Al}(\text{NH}_2\text{BH}_3)_3$ (s) \longrightarrow [Al(NB)₃]_n (s) + 9n H₂ (g) (13.4 wt.% Hydrogen)
- 6. $n \operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow [Al(NB)₃]_n (s) + 7.5 n H₂ (g) (12.8 wt.% Hydrogen)

 $n \operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow $[\operatorname{Al}(\operatorname{NBH})_3]_n$ (s) + 6 $n \operatorname{H}_2$ (g) (10.3 wt.% Hydrogen)

- 7. $n \text{NH}_4[Al(\text{NH}_2\text{BH}_3)_4]$ (s) \longrightarrow [(Al(NB)_4NH]_n (s) + 11.5 $n \text{H}_2$ (g) (14 wt.% Hydrogen)
- 8. $n \operatorname{LiAl}(NH_2BH_3)_4$ (s) \longrightarrow [LiAl(NB)₄]_n (s) + 10 $n \operatorname{H}_2$ (g) (13 wt.% Hydrogen)

Approach

Synthesis of Aluminum-AB Complexes

- Our initial targets for AI-AB complexes are AI(NH₂BH₃)₃, its ammonia adduct NH₃•AI(NH₂BH₃)₃, LiAI(NH₂BH₃)₄ and NH₄[AI(NH₂BH₃)₄]. A number of routes are available for their synthesis.
- Metathesis reaction of AICI₃ with M-AB (M = Li, Na or K) should give AI-AB. Further reaction of AI-AB with liquid NH₃ will give the desired NH₃•AI(NH₂BH₃)₃.
- Similarly the reaction of LiAlH₄ with AB Should give LiAl(AB)₄. Cation exchange to NH₄ will give the desired NH₄[Al(NH₂BH₃)₄] complex.

Technical Accomplishments and Progress Synthesis of Aluminum AB Complexes (Continued)

AI(NH₂BH₃)₃ from Aluminum Hydride

 $AI(NH_2)_3 + BH_3 \cdot THF \longrightarrow AI(NH_2BH_3)_3$

 $AI(NH_2)_3$ is difficult to isolate in pure form and easily forms polymeric [AI(NH_2)NH]n which does not react with $BH_3 \cdot THF$ complex.

Al(NH₂BH₃)₃ from Aluminum Chloride

3 M(NH₂BH₃) + AlCl₃ → Al(NH₂BH₃)₃ + 3 MCl M = Li, Na or K

 $AI(NH_2BH_3)_3 + NH_3 (excess) \longrightarrow NH_3 \cdot AI(NH_2BH_3)_3$

The reaction of AICl₃ with M-AB gives desired product. Milestone complete.

Technical Accomplishments and Progress ¹¹B NMR and IR Studies on Al(AB)₃ Complexes

Technical Accomplishments and Progress ¹¹B NMR Studies on LiAl(AB)₄ Complex

Li[AI(NH₂BH₃)₄]

M-AB adducts are characterized. Milestone complete.

Technical Accomplishments and Progress Thermal Dehydrogenation Studies TGA-MS

- AI(NH₂BH₃)₃ starts releasing hydrogen at 60 °C.
- $NH_3 \bullet AI(NH_2BH_3)_3$ releases ammonia when heated.
- LiAl(AB)₄ releases hydrogen at higher temperatures.

Thermal release studies are underway. Milestone complete.

Technical Accomplishments and Progress Powder X-ray Diffraction and DSC of AI-AB Complexes

The powder X-ray diffraction pattern of these complexes exhibit similar pattern suggesting that ammonia is incorporated in the unit cell via hydrogen bonding. Preliminary DSC analysis indicates the Al(AB)₃ has exothermic hydrogen release therefore will require off-board regeneration. (milestone) 12

Collaboration

University of Missouri project is coordinated with Center Partners through frequent discussions, monthly conference calls, sample sharing and analytical instrumental support.

Los Alamos National Laboratory

- Dehydrogenation studies.
- -Regeneration efforts.

Pacific National Laboratory

- Solid state NMR studies.
- Regeneration efforts.

- Continue the analysis of hydrogen release from these new materials.
- Determine long term stability of new materials.
- Establish hydrogen release kinetics for new materials.
- Determine solid state structures.

Since last review – for year 2009

- Synthesized Al(AB)₃, LiAl(AB)₄ complexes and their ammonia adducts in good yields. The complexes were characterized by NMR and IR studies.
- Preliminary dehydrogenation studies indicate AI-AB complexes release hydrogen at 60 °C, lower than AB alone.
- TGA-MS studies show that the ammonia adduct of Al-AB complex also releases ammonia.