Carbon Aerogels for Hydrogen Storage

T. F. Baumann, M. A. Worsley and J. H. Satcher, Jr.

Lawrence Livermore National Laboratory

Hydrogen Sorption Center of Excellence DOE Hydrogen Program Annual Merit Review May 20, 2009

DOE Hydrogen Program

This presentation contains no confidential or proprietary information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Project ID: stp_25_baumann

Project Overview

Timeline

- Project start: FY05
- Project end date: FY09
- Percent complete: 90%

Budget

- Total project funding (proposed): \$1050K
- Funding received in FY08: \$470 K
- Funding for FY09: \$470 K
 - 0.5 FTE + 1.0 Post-Doc

Technical Barriers Addressed by Project

- A. System Weight and Volume
- C. Efficiency
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- CalTech (Prof. Ahn)
 - H₂ adsorption measurements
- NIST (C. Brown)
 - Characterization by Neutron Scattering Experiments
- UNC-Chapel Hill (Prof. Wu)
 - Advanced NMR analysis
- HRL Laboratories (J. Vajo, MHCoE)
 - Scaffolds for Metal Hydrides

Project Objectives

- Our objective is the design of novel aerogel materials that meet the DOE system targets (6 wt%, 45 g/L) for on-board vehicle H_2 storage
- Current focus in two areas:
 - Engineering of aerogel-based sorbent materials:
 - •Optimize structure for enhanced H₂ uptake and improved kinetics
 - Storage at reasonable operating temperatures
 - Design of aerogel materials as porous scaffolds for light metal hydride systems:
 - Potential to improve kinetic and thermodynamic performance of metal hydrides

FY07

- Engineering undoped CAs
- Evaluation of H₂ Sorption
- Screening of CA Scaffolds

FY08

- Dopant Incorporation
- Spillover/Kinetics Study
- CA Scaffold Engineering

FY09

- Mechanistic Studies
- Reversibility/Lifetime Studies for CA Sorbent and Scaffolds

Project Approach-Part 1

- Our approach is to utilize the flexibility of aerogel synthesis for the design new sorbent materials
- Aerogel synthesis allows for control over bulk properties (surface area, pore size, pore volume, composition, density) and for the homogeneous incorporation of modifiers (metal catalysts, organometallic species) into the matrix
- With this approach, we can control: Aerogel Particles
 - Surface chemistry and microstructure of the sorbent
 - **Dispersion** of the modifier (i.e. Pt nanoparticles for spillover)
- We can also use this flexibility to explore other sorbent materials with unique compositions
- Process is scaleable for production of monoliths or powders

Project Approach-Part 2

Limits particles sizes and reduces diffusion distances

• We are fabricating aerogels as scaffolds for light metal hydrides (LMH), such as MgH₂, LiBH₄ and NaAlH₄ MH Nanoparticles

•Work with HRL Laboratories (Metal Hydride CoE)

- Structural requirements for practical application of MH scaffolds:
 - •Large pore volumes (minimize capacity penalty)
 - •Small pore sizes (limit particle sizes)
 - Good thermal conductivity
 - Compatible surface chemistry
- We are using the flexibility of aerogel synthesis to design novel nanocomposites that possess the requisite structural, chemical and transport properties for metal hydride scaffolding

Porous Scaffold

Previous Accomplishments

- Microporous CAs with surface areas in excess of 3000 m²/g were prepared that exhibited surface excess H2 adsorption of up to 5.3 wt% and 29.2 g H₂/L at 77K
- These high surface area materials were used as supports for the design of new spillover materials with the goal of increasing overall H₂ capacity and improving uptake kinetics at room temperature
- Hydrogen dissociation catalysts (Ni, Pt) were incorporated into the aerogel supports by different methods to investigate the effects of catalyst dispersion and catalyst/support interface on H₂ uptake and kinetics
- Spillover systems derived from CAs exhibited significant issues with reproducibility for H₂ uptake at RT

HR-TEM of Pt-doped ACA (2400 m²/g) prepared by atomic layer deposition

Technical Accomplishments: Tailoring Surfaces of Spillover Materials

- We are examining the effects of surface chemistry of the carbon support on the spillover process:
 - Influence of oxygen-containing groups on catalyst performance, spillover kinetics, by-product formation (i.e. H₂O)
- Two approaches have been used to increase the oxygen content on the CA surface:
 - 1.Oxidation of CAs through activation in air at 450°C (SA ~ 1500 m²/g)
 - Oxygen content: 20 wt% (vs. 3 wt% in ACA)
 - 2.Coating of activated CAs with sucrose (H_2O , H_2SO_4), followed by partial carbonization under N_2 at 400°C (SA ~ 2300 m²/g)
 - Oxygen content: 11 wt%
- Pt nanoparticles have been incorporated into both types of modified CA using:
 - Impregnation (Yang, J. Phys. Chem. C 2007)
 - Microwave plasma deposition (Gennett, NREL)
 - Samples are currently being evaluated for RT H₂ uptake

Technical Accomplishments: New Sorbent Materials

- We have prepared a series of chromia aerogels as potential H₂ storage materials:
 - Previous work showed that Cr_2O_3 and ZnO can reversibly bind H_2 at appreciable binding energies¹
 - Papers reported enhanced H₂ binding at low temperatures (77 K) and activated adsorption at elevated temperatures (> 50°C) in α -Cr₂O₃
- Using sol-gel chemistry, high surface area amorphous and α-Cr₂O₃ aerogels have been synthesized for H₂ adsorption experiments (77 K and RT)
 - •BET SAs: 500 m²/g (amorphous) 70 m²/g (crystalline)
 - Uptake measurements at CalTech
 - Amorphous sample exhibits binding energy of ~6 kJ/mol at 77 K
 - Crystalline sample not yet tested

¹Weller/Voltz JACS, 1954, 76, 4695; Burwell/Taylor JACS, 1936, 58, 697.

Technical Accomplishments: Functionalized Aerogels as Kubas Supports

- Aerogel architectures can be utilized as high surface area supports for organometallic complexes that can reversibly bind H₂
- We have synthesized new aerogel substrates that are functionalized with ligands for the stabilization of organometallic complexes
 - Low-density SiO₂ aerogel (SA ~ 750 m²/g) with pendant -PPh₂ groups
 - Prepared through co-condensation of (MeO)₄Si and (EtO)₃SiCH₂CH₂PPh₂

 This material has been treated with organometallic Ni complexes and H₂ uptake behavior of the products are currently being tested

Technical Accomplishments: Improved Scaffold Design

- Improved synthesis methods have generated new scaffolds with smaller pore sizes and larger pore volumes:
 - Sacrificial template incorporated into aerogel matrix during the sol-gel reaction and removed during carbonization
 - Materials with pore volumes as large as 5 cm³/g have been prepared
 - New material combines the large pore volumes of the our original CAs with the small pore size of HRL xerogels

- CA with small pore sizes (< 5 nm) delivered to NIST (Jack Rush) for LiBH₄ study (¹¹B and D studies)
- •CA scaffolds also delivered to PNNL (Tom Autrey) for AB studies

AMR09_STP-25_baumann.10

Technical Accomplishments: Carbon Nanotube Composite Scaffolds

- We have prepared new carbon nanotube (CNT)-CA nanocomposites¹ as next-generation scaffold materials:
 - Improved thermal transport in these scaffolds
 - Facilitated H₂ transport (open-ended CNTs as "plumbing")
 - CNTs can influence rates of hydrogen exchange

- Scaffolds prepared with single- and double-walled CNTs at various loading levels
- Composites exhibit enhanced thermal conductivities
- LiBH₄ composites prepared with these scaffolds exhibit unusually low dehydrogenation temperature:
 - Interaction of BH₄ with CNT surface may influence H₂ release
 - Residual metal catalyst (Ni/Y) may also play role in process

¹M. A. Worsley, et al, Appl. Phys. Lett., **2009**, 94, 073115; Langmuir, **2008**, 24, 9763.

Technical Accomplishments:

Scaffolds containing Destabilization Agents

- Performance of MHs can be improved through the introduction of catalysts and/or destabilizing agents into the bulk material
- Aerogel synthesis allows for controlled incorporation of these modifiers into these scaffolding architectures
- Titania has been reported to be a destabilizing agent for LiBH₄
 Desorption temperatures of 150°C

•Formation of LiTiO₂ as intermediate (*J. Phys. Chem. C*, 2008, *112*, 11059.)

• We have synthesized CA scaffolds coated with a thin layer of TiO₂:

CA Scaffold

TiO₂-coated CA (37 wt% Ti)

Large pore volumes are preserved after incorporation of TiO₂
 Loading of titania can be controlled through synthesis
 Performance as scaffolds currently being tested

AMR09_STP-25_baumann.12

Collaborations

• Partners:

- CalTech (Academic): H₂ uptake measurements in spillover materials as well as new sorbent systems
- HRL Laboratories (Industry): Evaluation of aerogels as scaffolds for metal hydrides
- NREL (Federal): (1) Performance evaluation of new spillover materials and (2) testing of functionalized aerogels as supports for organometallic species
- NIST (Federal): (1) Characterization of H₂ uptake in sorbents and (2) evaluation of scaffolding effects on performance of metal hydride materials by Neutron Scattering experiments
- UNC-Chapel Hill (Academic): Advanced NMR analysis of H₂ sorption in high surface area sorbents

Future Work

- Performance evaluation of spillover behavior in metal-doped CAs:
 - Tailored design of surface chemistry and microstructure of spillover support to improve uptake kinetics and reversibility
- Improved design of functionalized aerogels as supports for organometallic H₂ complexes:
 - •Synthesis of high surface area R₂P-aerogels
- Evaluate RT H₂ uptake in new aerogel sorbents:
 - Determine binding energies and kinetics for H₂ uptake in high surface area Cr₂O₃ and reduced TiO₂ aerogels
- Optimization of aerogel scaffolds for metal hydrides:
 - Continued engineering of scaffold structure (porosity, composites)
 - Modify CA surface chemistry to improve MH wetting behavior
 - Incorporation of catalysts/destabilizing agents
- Evaluate reversibility and lifetime in these materials over multiple charge/discharge cycles

Project Summary

Relevance: Design of new aerogel materials for hydrogen storage

- Approach: Incorporation of modifiers into high surface area aerogels to maximize H₂ uptake and increase binding energies
- **Technical Accomplishments:**
 - Fabrication of new spillover supports with tailored surface chemistry
 - Synthesis of functionalized aerogels as supports for Kubas-type complexes as well as novel sorbent materials derived from Cr₂O₃
 - Preparation of novel CA-CNT nanocomposites as scaffolds for metal hydride systems
- **Center Collaborations:**
 - Prof. Channing Ahn (CalTech): H₂ sorption measurements
 - John Vajo (HRL, MHCoE): CA scaffolds for metal hydrides
 - Craig Brown (NIST): Characterization of activated CA structure by NS
 techniques
 - Prof. Yue Wu (UNC): Characterization of CA structure and H₂ uptake by advanced NMR techniques

Summary for CA Materials

DOE On-Board Hydrogen Storage System Targets

Storage	Units	2010 S <i>ystem</i>	CA <i>Material</i>
Parameter		Target	Results
Specific Energy	kWh/kg (wt% H ₂)	2.0 (6 wt% H ₂)	5.3 wt% at 77 K and 30 bar
Energy	kWh/L	1.5	~2 9 g H₂/L
Density	(g H ₂ /L)	(45 g H ₂ /L)	

