

Advanced Boron and Metal Loaded High Porosity Carbons

PENN<u>STATE</u>

T. C. Mike Chung Vincent Crespi Peter Eklund Hank Foley

The Pennsylvania State University

Project ID#: stp_29_chung

May, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: 2/1/05
- Project end: 1/31/10
- % complete: 80%

Budget

- Total funding for PSU team
 - DOE share: \$1,485,000
 - Contractor share: \$371,250
- FY08 \$ 333,000
- FY09 \$ 333,000

Partners

- Dispersed throughout HSCoE: NIST (neutron), NREL (TPD), Air Products (vol. ads.), UNC (NMR)
- M Dresselhaus (MIT)
- Carbolex, Inc

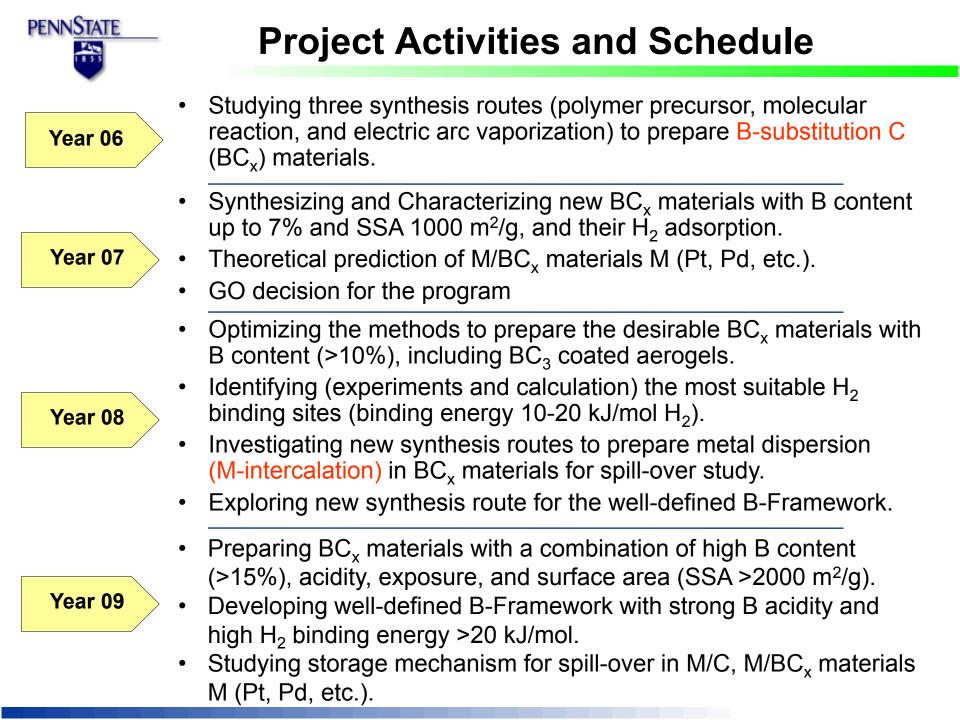
Barriers

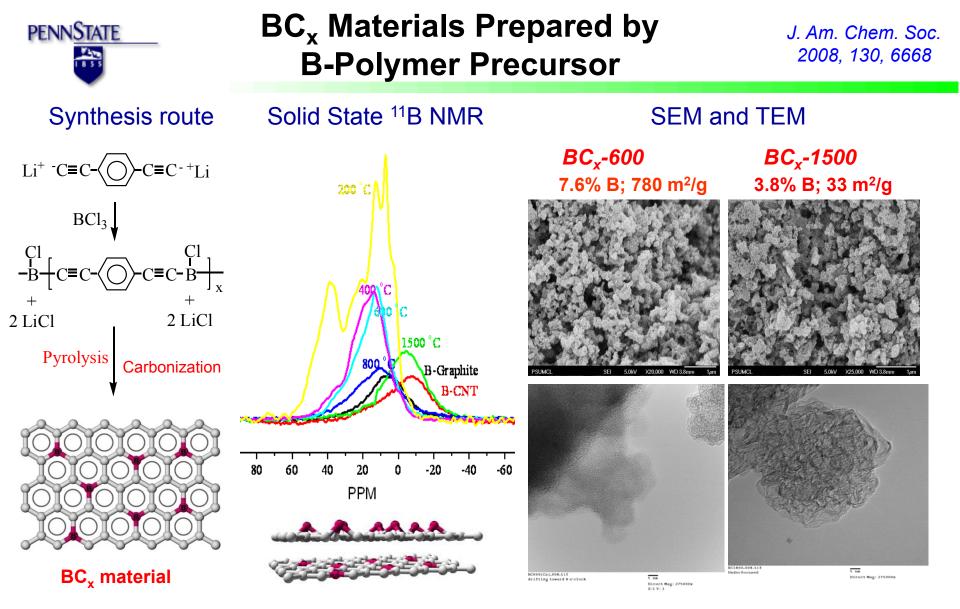
- <u>A:</u> System Wt & Vol: Hydrogen volumetric (1.5 kWh/L) and gravimetric (6wt%) storage density goals for 2010
- <u>B:</u> *Absorbents:* Hydrogen binding energy 10-20 KJ/mol and SSA >2000m²/g
- <u>C:</u> System Cost: High-volume low-cost synthesis routes (via pyrolysis, molecular reaction, and arc)
- <u>D:</u> Energy Efficiency: Moderate temperature operation (via enhanced binding energy)
- <u>E:</u> Charge/Discharge Rate: via Mixed micro/mesopore structures through precursor design
- <u>F:</u> *Thermal Management:* via designed moderate binding energies of physisorption
- <u>G:</u> *Improved Understanding:* via calculations in coupling with fundamental measurements on well-characterized, well-ordered systems

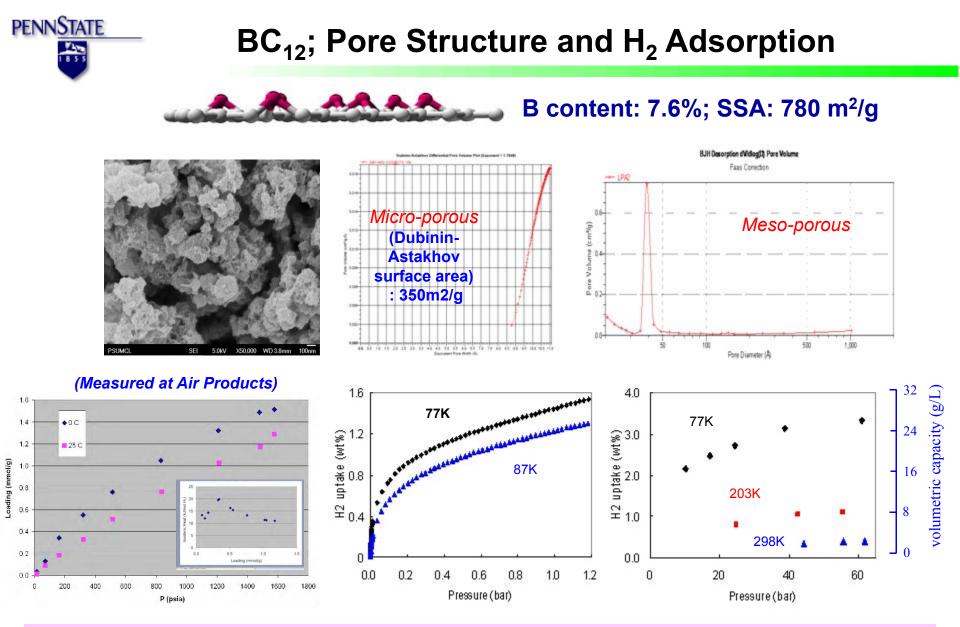
Three complementary approaches to prepare B-substituted carbon (BC_x) materials

- B-Containing Polymer Precursors and Pyrolysis (Chung)
 - New precursors to prepare BC_x with high B content, acidity, and SSA
 - Accomplishment: 15% substitutional B in BC_x structure. Data show the incorporation of B in C doubles the H₂ binding energy and absorption capacity. BC_x shows enhanced dispersion of Pt nanoparticles for spill-over study. Developing new route to prepare the well-defined B-framework that could further enhance B acidity, content, exposure, and SSA.
- Molecular Reaction and Pyrolysis (Foley)
 - Combinations of precursors to control complex pyrolitic decomposition
 - **Accomplishment:** Synthesis of BC_3 coated aerogel that shows increase of H_2 binding energy and adsorption capacity due to BC_3 surface modification.
- Electric arc vaporization from M-B-C Electrodes (Eklund)
 - Non-equilibrium high-energy conditions
 - Accomplishment: Production of highly ordered uniform high SSA B-doped carbon nanotubes with boron doping up to 3%, which shows enhancement of H₂ binding energy by inelastic neutron scattering. Production of Al-Bnanocarbon particles from Al-B-C electrodes.

Objectives and Approaches

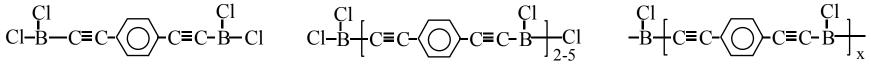

Achieving DOE 2010 H_2 storage goal with 60 mg H_2/g (gravimetric) and 45 g H_2/L (volumetric) by developing advanced H_2 adsorption materials with moderate binding energy (10-20 kJ/mol) and high SSA (> 2000 m²/g)


Synthesis of Microporous <u>Boron Substitutional Carbon</u> <u>Materials (BC_x)</u> and its derivatives, closely coupled to adsorption measurements and first-principles materials theory


B Features

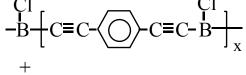
- ✓ Lightness of Boron
- ✓ Abundant
- ✓ Enhancing H₂ interaction
- ✓ Tunable acidity
- ✓ Stabilizing atomic metal

BC_x microstructure and acidity are dependent on pyrolysis temperature.
BC_x-600 contains 7% B and 780 m²/g porosity (only 1/3 of B are accessible).

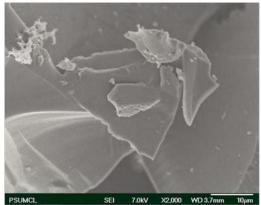

 BC_x -600 shows both micro- and meso- porous structures, heat of adsorption 10-20 kJ/mol, and more than double H₂ adsorption capacity vs. C with the same SSA.

Increase B Content in BC_x; BC₈ and BC₆

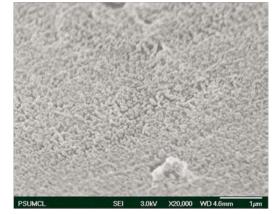
Oligamer precursor (Wax)



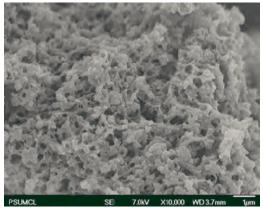
Polymer precursor (Solid)



B/C ratio= 1.5/10

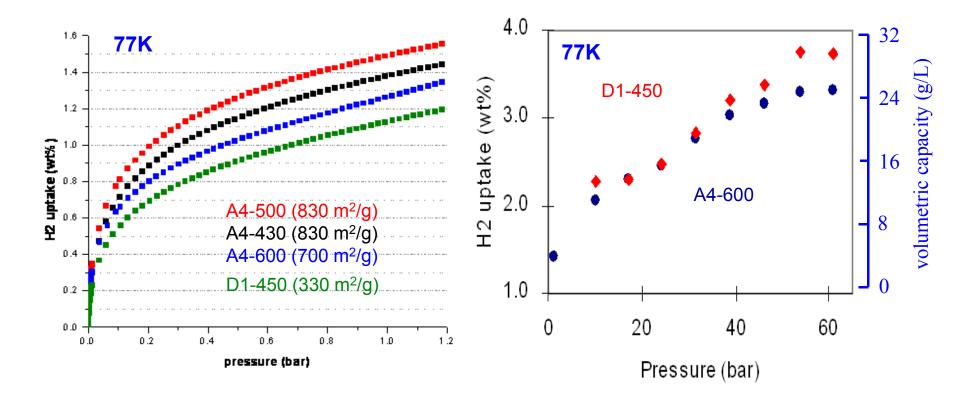


2 LiCl B/C ratio= 1/10


(Pyrolysis at 600 °C for 12 hours to form B/C with >60% yield)

B Content: 14.5 % SSA: 5 m²/g

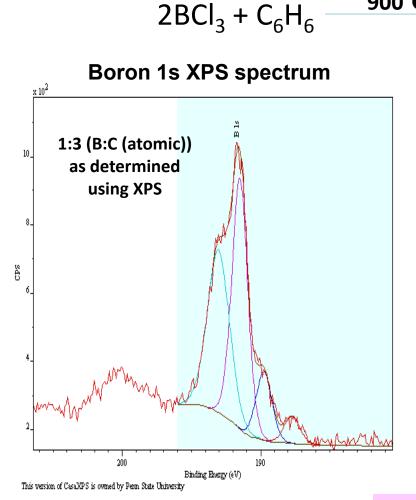
B content: 11.6% SSA: 330 m²/g (microporous)


B content: 7.6% SSA: 780 m²/g

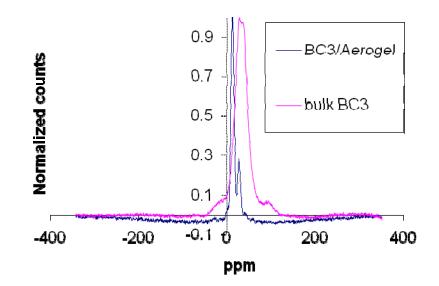
BC₆ and BC₈ materials have been prepared using liquid precursors. However, the resulting BC_x materials exhibit lower surface areas.

H₂ Adsorption Capacities for BC₈ and BC₁₂

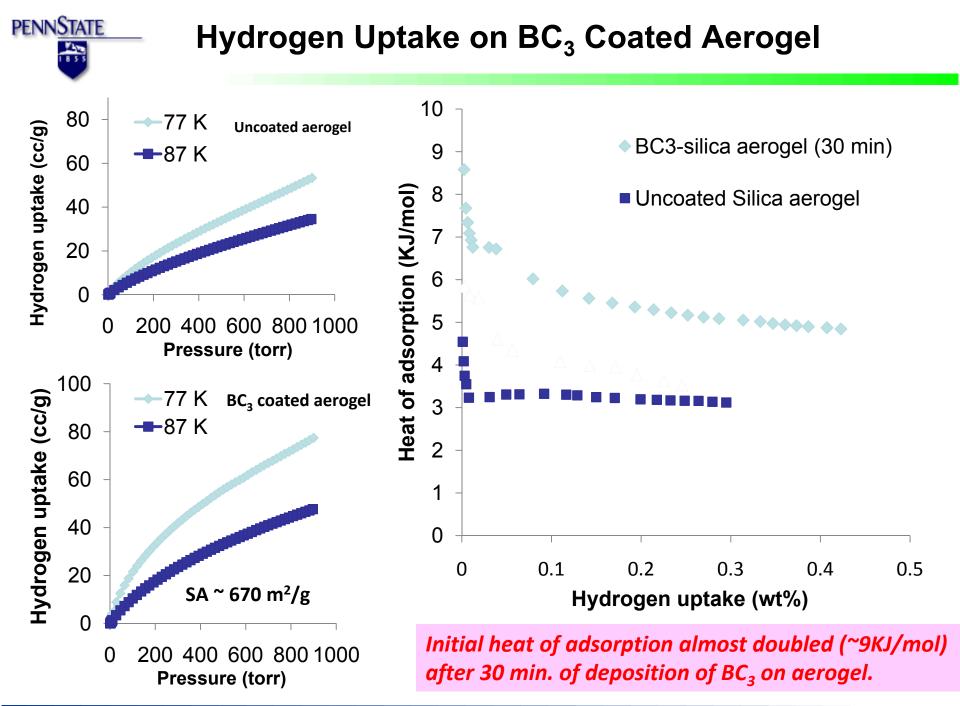
A4 samples (7.6% B) are prepared from polymer precursor D1 sample (11.6% B) is prepared from oligomer precursor



Despite low surface area, the D-1 sample with higher B content (11.6%) shows significantly higher H₂ adsorption capacity per surface area.


Further Increase B Content; BC₃

900°C


Solid state B NMR spectroscopy

 $2BC_3 + 6HCl^{a,b,c}$

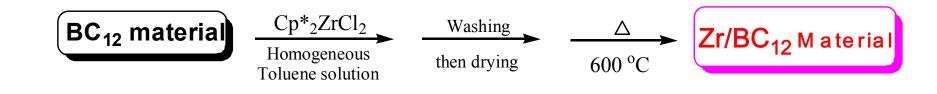
Presence of trigonally bonded boron also confirmed using 900 MHz solid state B-NMR done at PNNL

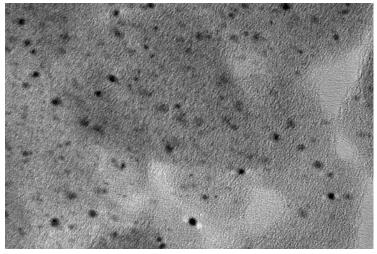
^a Kouvetakis et al., *JCS Chem. Comm.*, (1986), 1758-1759 ^b Fecko et al., *Carbon*, 31 (1993) 637 -644 ^c Cermignani et al., *Carbon*, 33 (1995) 367-374 Synthesis of BC₃ reproduced successfully
BC₃ was successfully deposited on high surface area mesoporous silica (~670 m²/g)



Metal-decorated BC_x materials for Spill-over

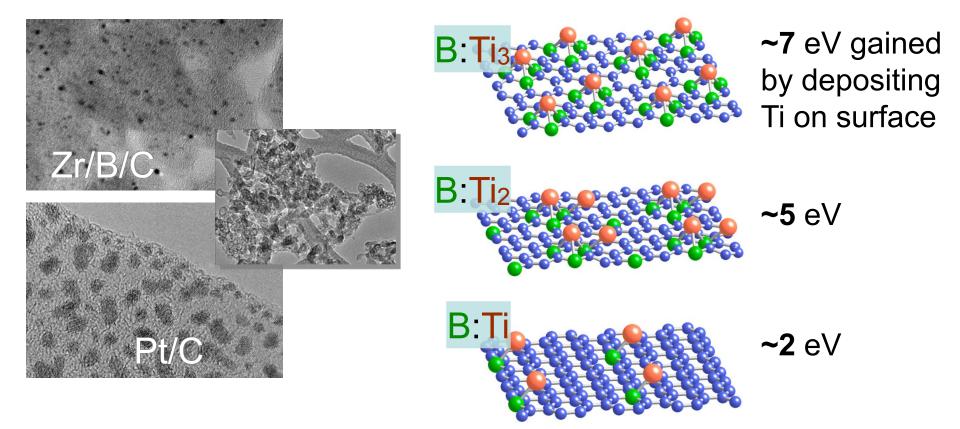
Synthesis Routes


TEM Micrographs


B/C material offers active surfaces; absorbing H₂PtCl₆ in aqueous solution and forming Pt nano-particles (<2 nm) after reduction.

Zr and Ti nanoparticle on BC₁₂ Materials Using Metallocene Reagents

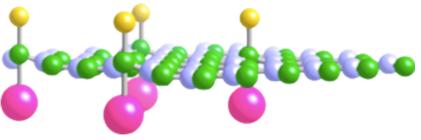
Metal Containing Reagents	Activated C (200 mg, 600 m ² /g)	B/C Material (200 mg, 500 m ² /g)		
	After metal loading (mg)	After metal loading (mg)		
N(C ₄ H ₉) ₃	200	279		
Cp ₂ TiCl ₂	200	309		
Cp* ₂ ZrCl ₂	205	222		
[(η ⁵ -Cp*)SiMe ₂ (η ¹ - NCMe ₃)]TiCl ₂	203	272		



Uniform Zr particles on B/C (size < 2nm)

- Several early transition metal (Ti and Zr) nanoparticles (< 2nm) have also been formed and well-dispersed on BC₁₂ surfaces.
- Pt/BC₁₂ material shows <u>Spill-over phenomenon</u> with significant H2 adsorption at ambient temperature.

Theory Work: Increasing B doping in BC_x stabilizes dispersed metals

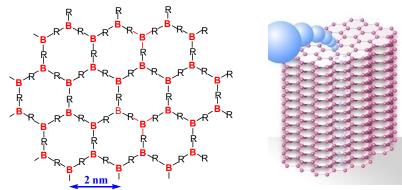

Calculations suggest that boron doping stabilizes **atomically** dispersed metals (Sc, Mg, Ti, Pd, Be...) against aggregation. Stabilization is both thermodynamic (charge transfer) and kinetic (due to variations in local B content). These metals then provide highly-coordinate H₂ binding sites.

Theory Work: Long-range electrostatic effects due to topological frustration modulate H₂ bonding

0.28 eV per H₂ K high density 0.1 eV per H₂ low density

BN barriers enable stronger cross-sheet charge transfer due to weaker screening.

Closure of the alkali halfspace by sheet curvature (closed fullerene-like structure) would produce a high SSA bulk material.


Plan for the rest of FY09

Increasing surface area of BC_x materials

Continuing the development of BC_x materials to achieve a combination of high B content, acidity, and exposure, and surface area (>2000 m²/g), which could further increase H₂ storage capacity at ambient temperature.

- Studying spill-over on the metal-doped BC_x materials during H₂ adsorption-desorption.
- Improving Boron-framework to achieve well-defined microporous structure and high surface area.

High B content (12-20%) Good B exposure Highly acidic B species SSA > 2000 m²/g

Summary

- **Relevance:** Increase reversible hydrogen binding energy by developing new storage materials through B-substitutional carbon (BC_x) structures.
- **Approach:** Three complementary synthesis techniques closely coupled to adsorption measurements and first-principles materials theory.
- Technical accomplishments:

PENNSTATE

- Developing new chemical routes to prepare boron-substituted carbon (BC_x) materials with a broad range of B content and acidity.
- Understanding BC_x structure from puckered to graphitic controlled by pyrolysis temperature.
- BC₁₂ material with SSA= 780 m²/g shows H₂ binding energy 20-10 kJ/mol and more than doubles H₂ absorption capacity per surface area.
- BC₈ material with SSA=330 m²/g shows even higher H₂ adsorption capacity per surface area (3.8 wt% at 77K).
- BC₆ material with 15% B has been prepared, but having very low SSA.
- BC₃ coated aerogel also shows increase of H₂ binding energy (6 kJ/mol)
- Transition metal doped BC_x materials (M/BC_x) exhibit well-dispersed Pt, Ti, Zr nano-particles (size < 2nm) and Spill-over phenomenon.
- Studying new synthesis route to prepare new B-frameworks that have high microporous surface area and high B acidity.

Summary Table

Material Systems	Surface Area (m²/g)	Binding Energy (KJ/mol H ₂)	H ₂ Adsorption Capacity			
			Gravimetric (mg H ₂ /g)	Volumetric (g H ₂ /L)	Temperature (K)	Pressure (atm)
BC ₁₂	780	10-20	3 34	2.4 27.2	298 77	100 50
BC ₈	330		5.2 38	4.2 30.4	298 77	83 50
NPC (derived from PFA)	1590		6.5 23	4.875 17.25	298 77	100 1
BC ₃ Coated Aerogel	670	6-9	6.9	3.45	77	1

B substitution in C shows the significant increase of H_2 binding energy (20-10 kJ/mol) and H_2 absorption capacity per surface area. To meet the 2010 goals, our research focus is on the greater microporous surface area.