New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage

Randall Snurr, Joseph Hupp, Mercouri Kanatzidis, SonBinh Nguyen *Northwestern University May 20, 2009* stp_33_hupp

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: 9/1/2008*
- End date: 8/31/2012
- 0% complete*

NORTHWES

Barriers

- Hydrogen storage
 - Gravimetric target
 - Volumetric target
 - Increased heat of adsorption

Budget

- Total project funding
 - DOE share: \$1,295,493
 - Contractor share: \$321,833
- FY08 Funding: \$0
- FY09 Funding: \$385,812

Partners

- No official partners
- Collaborators listed below

* 9/1/2008 is official start date. Funding not received until March 2009.

Relevance

Overall Project Objectives

- Develop new materials to meet DOE volumetric and gravimetric targets for hydrogen storage
 - Metal-organic frameworks (MOFs)
 - Polymer-organic frameworks (POFs)
 - Tight integration of synthesis, characterization, and modeling
- Increase heats of adsorption as a means to meet volumetric and gravimetric targets at ambient conditions

Relevance

Objectives for Current Year

- Metal-organic frameworks
 - Measure heats of adsorption and hydrogen uptake in existing cation-containing MOFs
 - Develop a new class of cation-containing MOFs
- Polymer-organic frameworks
 - Develop new POFs with high heats of adsorption
 - Use building blocks that increase microporosity and can bind lithium ions
- Modeling
 - Determine whether catenation is beneficial
 - Develop model for cation-containing MOFs

Enhance H₂ uptake via introduction of cations

- Two approaches for introducing cations
 - Framework reduction
 - Alkoxide functionalization
- Mechanisms for increased uptake
 - Enhanced London dispersion interactions due to enhanced framework polarizability?
 - Enhanced adsorption due to increase in electric field?
 - Enhanced adsorption due to charge/quadrupole interactions?
 - Enhanced adsorption due to ion-induced displacement of catenated frameworks?

Metal-organic Frameworks

- Introduce charge via desirable cations
- Cation placement known and controllable
- Alkoxide formation should not greatly alter structure
- Alkoxide frameworks not air sensitive

Metal-organic Frameworks

Milestones for FY09

- Achieve 8 kJ/mol heat of adsorption at low coverage
- Achieve 8 kJ/mol heat of adsorption with little drop-off at higher coverages
- Achieve 10 kJ/mol heat of adsorption at low coverage

Hydroxylfunctionalized MOFs

Mulfort, Farha, Stern, Sarjeant, Hupp, J. Am. Chem. Soc., 2009.

Polymeric-organic Frameworks

- Tailorable, microporous polymers containing π-conjugated phenyl groups linked together
- Modular construction
 - Two synthesis methods
 - Schiff's base chemistry
 - "Click" chemistry
 - Components chosen to produce loosely-packed, extended 3D networks
- Attributes of POFs that make them attractive for hydrogen storage
 - Very low density
 - Three-dimensional semi-rigid character
 - Designed microporosity through inefficient packing of polymer chains
 - Built-in functional groups for tuning H_2 interaction
 - Ability to generate systematic series of materials will provide increased understanding of gas adsorption and ultimately optimization

Polymer-organic Frameworks

Milestones for FY09

- Synthesize POFs with surface areas > 1500 m^2/g
- Introduce Li ions into POFs
- Demonstrate tunability of microporosity
- Achieve 8 kJ/mol heat of adsorption at low coverage

Molecular Modeling

- Determine effect of catenation on H₂ adsorption in Northwestern paddlewheel MOFs using
 - grand canonical Monte Carlo (GCMC) simulations
 - existing force fields that have been validated for other MOFs
- Develop model for cation-containing MOFs
 - Determine H₂/cation interactions with quantum chemical methods
 - DFT for geometries
 - MP2 with large basis set for energies \rightarrow heat of adsorption
 - Fit QM results to analytic forms for GCMC
 - Use GCMC to predict effects of different cations, cation loading, pore size, etc. on hydrogen uptake

Molecular Modeling

- Milestones for FY09
 - Determine whether catenation is beneficial for hydrogen uptake in MOFs without cations
 - Develop model for cation-containing MOFs

Example: Hydrogen in IRMOF-1

Simulations: Ryan, Broadbelt, Snurr, *Chem. Comm.*, 2008. Experiments: Kaye, Dailly, Yaghi, Long, *J. Am. Chem. Soc.*, 2007.

- Synthesis of a reducibleframework material
- Struts can be reduced with lithium.

One of two identical networks shown

- H₂ uptake is nearly doubled with 5% doping
- Heat of adsorption substantially increases

- Enhancement effects extend to other cations
- Enhancement effects extend to other MOFs
- Enhancements scale with cation-induced surface area modulation

12

8

Using modeling, established that H₂ uptake in MOFs fall into 3 regimes:

N_{abs} (mg/g) 0 $\Delta H_{adsorption}$ (kJ/mol)

- At low P, uptake correlates with heat of adsorption
- At intermediate P, uptake correlates with surface area
- At high P, uptake correlates with free volume

Frost, Düren, Snurr, J. Phys. Chem. B, 2006.

Using modeling, quantified the tradeoff between free volume and heat of adsorption for H_2 storage in MOFs.

Both are necessary.

 \triangle IRMOF-1; \diamond IRMOF-9; * IRMOF-10; \bigcirc IRMOF-14; + IRMOF-16; \Box Cu-BTC

Frost and Snurr, J. Phys. Chem. C, 2007.

Collaborations

- Argonne National Laboratory
 - Dr. Karen Mulfort: SAXS and other characterization
 - Dr. Peter Stair: Raman characterization
- Universidade Federal Ceara, Fortaleza, Brazil
 - Profs. Celio Cavalcante, Diana Azabedo, Mardonio Lucena: high pressure adsorption measurements, roundrobin validation of uptake measurements
- Nature of the collaborations
 - We have existing relations with these groups, but the collaboration on hydrogen storage is just starting.
 - These groups are external to the DOE H_2 Program

Proposed Future Work

- MOFs
 - Develop non-catenated, high-area, cation-containing MOFs
 - Continue to measure H₂ uptake and heats in new materials
- POFs
 - Develop new cation-containing POFs
 - Continue to measure H₂ uptake and heats in new materials
- Modeling
 - Validate model against experimental data
 - Extend modeling to POFs
- Go/No-Go Decision at end of FY10
 - Project will continue into Phase 2 if any materials have a volumetric capacity of 45 g/L at -40°C and 100 atm; or if any materials have a gravimetric capacity of 6 wt% at -40°C and 100 atm; or if any materials display heats of adsorption above 10 kJ/mol. Note that these are capacities of the materials alone.
 - The Phase 2 transition would include down selecting materials.

Summary

- We are developing new materials to meet DOE hydrogen storage targets
 - Metal-organic frameworks (MOF)
 - Polymer-organic frameworks (POF)
- The new concept is to introduce cations into MOFs and POFs to improve the heats of adsorption, which will improve room temperature storage.
- We have already developed 2 strategies for introducing cations into MOFs.
- Integration of molecular modeling and experiment will aid in reaching our goals.