Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching

Angela D. Lueking,¹ Jing Li,² Milton W. Cole¹

¹Penn State University, ²Rutgers University May 20, 2009

stp_34_lueking

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- o Start Jan 2009
- o End Dec 2013
- o ~7% Complete

Barriers

Barriers addressed

- Gravimetric Capacity
- Min/max delivery temperature
- Max delivery pressure from tank

Budget

- Total project funding
 - DOE \$1,512,922
 - PSU \$262,151
 - RU \$229,028
- \$75K in FY08
- \$275K FY09

Partners

- Prof. Angela D. Lueking (Penn State)
- Prof. Jing Li (Rutgers) Co-PI
- Prof. Milton W. Cole (Penn State), Co-PI

Objectives - Relevance

The **overarching objective** is to synthesize designer microporous metal-organic frameworks (MMOFs) mixed with catalysts to enable H-spillover for H_2 storage at 300K-400K and moderate *P*s.

In 2009 (Jan.-Dec.), we will:

- A. Train new users, upgrade and validate H₂ storage measurements -- (PSU) 50% complete
- B. Synthesize new MMOF structures to explore the effect of surface chemistry, porosity, and structure on hydrogen spillover (RU) -- 30% complete
- c. Method Development for Catalyst Studies and MMOF compatibility with catalysts (PSU) 5% complete
- D. Explore the incorporation of active hydrogen dissociation centers directly into the MMOF framework (PSU & RU) –5% complete

The impact your project has on addressing the <u>barriers</u> identified in the Overview slide and <u>other specific targets and milestones</u>.

STRATEGIES / APPROACH TO MAXIMIZE H₂ STORAGE AT MODERATE T AND P

- Optimize Hydrogen Spillover Mechanism utilizing MOF design to maximize receptors of spilledover H:
 - Surface Chemistry
 - Porosity
- Direct incorporation of catalytic sites
- Explore P-induced and H-induced structural changes for H₂ trapping

APPROACH

Upcoming Milestones:

 Correlation between spillover and MMOF functional groups, (Yr. 2-- FY10) leading to:

- H2 uptake > 1 wt% at 20 bar and 300K;
- Extrapolation suggests > 4 wt% at 100 bar, or
- Pressure savings of >90% relative to the empty tank
- Incorporation of catalytic entities into MMOF framework (Yr. 2-- FY10) leading to:
 - MMOF catalytic activity H-spillover
 - Improved performance relative to Pt-C catalysts

Go/No-Go Decision Point.

Exceed 5.5 wt% hydrogen storage through the use of the "hydrogen spillover" mechanism, MOF material, or a combination of the two as proposed at moderate temperatures (i.e. 300-400 K) and 100 bar with anticipated system penalties (Go/No Go: 3Q Year 2).

A. TRAIN NEW USERS, UPGRADE AND VALIDATE $\mathrm{H}_2\,\mathrm{storage}$ measurements

High-Pressure Differential Volumetric System (custom-built)

- New students at PSU are trained on custom-built differential Sieverts and required to validate published data for AX-21 activated carbon against published results.
- Multiple *T*s are used in preparation for future catalyst studies

High-Pressure TG-MS

(Mass spec upgrade)

- A mass spectrometer was incorporated into an existing high P TGA in Mar 09
- MS validation shown below:

(a) Adsorption-Desorption Isotherm showed 1.0 wt% chemisorbed H_2 , which (b) desorbed with subsequent heating.

B. SYNTHESIZE NEW MMOF STRUCTURES TO EXPLORE THE EFFECT OF SURFACE CHEMISTRY, POROSITY, AND STRUCTURE ON HYDROGEN SPILLOVER

MMOF-1-Zn

MMOF-2-M (M = Ni, Cu, Zn)

MMOF-3-Zn

0.0

0.1

0.2

0.3

0.4

0.5

P, atm

0.6

0.7

0.8

0.9

1.0

BASELINE PHYSISORPTION DATA FOR AS-SYNTHESIZED MMOFS

B. EXPLORE THE EFFECT OF SURFACE CHEMISTRY, POROSITY, AND STRUCTURE ON HYDROGEN SPILLOVER

Mixing MMOFs with 5% Pt/C for 300K adsorption

Use of a spillover catalyst increases T_{ads} to 300K. MMOFs can increase the uptake by providing specific H-binding sites. Above, (b) surface chemistry may play a role at very low pressure, then (c) enhanced porosity may dominate.

FUTURE WORK

Explore P-, T-, and H- induced structural changes for H₂ trapping

KEY HURDLE: Understanding effects of structure, window size, surface chemistry, gas-surface potential, temperature, and pressure on P-induced hysteresis.

Cole will explore the theory of *P*-induced hysteresis.

The proposal will explore 'switches' that have the ability to turn on/off hydrogen adsorption/desorption with *T* and *P*.

•*For T-switching*: the <u>milestone</u> will be to identify surface functionalities that may strongly bind hydrogen species at T_A , but desorb at T_D <80 °C. The path-dependence of these 'temperature-switch' experiments will be evaluated. (Yr. 2 – FY10)

•*For P-switching*: MMOFs have demonstrated transformations induced by *P* and H-bonding. A milestone will be to observe at least 37.5% trapping due to hysteretic adsorption at moderate temperatures. The milestone will be model validation, and observation of H_2 and H gate-opening pressures in order to serve as a chemical switch for the dilation phenomenon. (Yr. 3 – FY 11)

FUTURE WORK INCORPORATION OF CATALYST DIRECTLY INTO MMOF STRUCTURE

Testing Catalytic Activity of M²⁺ in the MMOF framework.

BEFORE

AFTER 200 °C in H2 AFTER 200 °C in H2 Heterometallic MMOFs having catalytic metal ions imbedded in the internal wall of the channels/voids may act as the hydrogen spillover source. The unsaturated metals will be cross-referenced with catalysis data to determine expected active catalytic temperature for hydrogen dissociation. <u>Milestones (FY10)</u> include (a) evidence for catalytic activity of incorporated catalysts, based on either H₂-D₂ exchange studies and/or the WO₃ color change test (at left); and (b) superior performance (increased H:M, active T<80 °C) relative to the Pt/C catalysts.

COLLABORATIONS

University:

- Prof. Angela D. Lueking (Penn State) PI
- Prof. Jing Li (Rutgers) Co-PI
- Prof. Milton W. Cole (Penn State), Co-PI

Pending Collaborations / On-going discussions

- Prof. Silvina Gatica, Howard University
- Brookhaven National Laboratory

PROJECT SCHEDULE -FUTURE WORK

Legend

ii. Characterization 1 iii. Characterization 2 (porosity, surface area)

iv. Characterization 3 (catalysis)

v. Hydrogen Storage

i. Synthesis

vi. Model Development/Refinement (Cole)

vii. Model Experimental Validation(Lueking)

viii. Analysis, Writing, Leading to Synthesis Feedback & Refinement

ix. Overall Optimization; Final Material Design

		Project		Yea	ar 1			Yea	ar 2			Yea	ar 3			Yea	ar 4			Yea	ar 5	
Goal	Class of Materials	Milestone Description	Q1	Q2	Q3 C	240	Q1 (Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (Q3	Q4
Train																						
Users	Rutgers																					
	Penn state																					
1A	i																					
	ii																					
	iii.																					
	iv.																					
1B	İ																					
	ii																					
	iii.																					
	iv.																					
1C	i																					
	ii																					
	iii.																					
	iv.																					
2A	TBD (based on 1A, 1B)																					
2B	TBD (based on 1A, 1B)																					
2C	i																					
	ii																					
	iii.																					

SUMMARY

- Incorporation of catalysts to MMOFs increases operative adsorption temperature by activating hydrogen spillover process
- MMOF synthesis allows for tight control over porosity and surface chemistry, factors which are expected to increase hydrogen spillover and corresponding uptake.
- To date, surface chemistry appears to play a role at very low pressure while porosity plays a role at increased pressure.
- In first 3 months of project, focus has been on student training, synthesis, and equipment upgrades and validation.

Supplemental Slides

BACKGROUND: WHAT IS HYDROGEN SPILLOVER?

Box 1: Reaction sequence for hydrogen spillover.

MMOF-1-Zn

MMOF-2-M (M = Ni, Cu, Zn)

Crystal Data

Evacuated Formula Weight: 355.63 g/mol Crystal System: Tetragonal Space Group: *P422* Unit Cell Parameters: a=15.2312Å b = 15.2312Å c = 9.6630Å V = 2241.7 Å³, Z = 2 Framework Density: 0.5269 g/cm³ Solvent Accessible Volume: 73.3%

MMOF-2-M (M = Ni, Cu, Zn)

Properties	Ni	Cu
Pore Volume (Total)	0.64	0.80
Surface Area (BET)	1661	1332
Surface Area (Lang)	1801	1790
Hydrogen wt%	1.16	1.27
Isosteric Heats	4.4-5.4	4.5-5.5

Stee \$1.000. (5)

MMOF-3-Zn

Formula Weight: 872.43 g/mol Crystal System: Orthorhombic Space Group: *Pbcn* Unit Cell Dimensions: a= 22.028(3) Å b= 22.390(2) Å c= 16.573(5) Å V= 8223.1(14) Å³ Z= 8Density (Calculated): 1.409 g/cm³ Solvent Accessible Volume: 24.2 %

MMOF-3-Zn

Zn-OBBA-YL2-60A

MMOF-4-Zn

Crystal Data

Formula Weight (g/mol)	580.89
Crystal System	Tetragonal
Space Group	l4₁/amd
Unit Cell Dimensions:	
<i>a</i> = 19.0903Å	α = 90.0°
b = 19.0903 Å	β = 90.0°
<i>c</i> = 47.7560 Å	$\gamma = 90.0^{\circ}$
V = 17404.2 Å ³	

Z = 16

Density (Calculated, g/cm³) 0.783 Solvent Accessible Volume 64.4%

H₂hfipbb = 4,4'hexafluoroisopropyl idene)bis(benzoic acid

³He at T=o:

The fluid is not self-bound if no relaxation is included, but becomes strongly self-bound when it is included.

The effect of lattice relaxation is huge!

Imbibition transition occurs when the fluid enters a pore that is expanded as a consequence of the presence of the fluid. Qualitative change in the isotherm!

Note hysteresis, associated with van der Waals loop.