

Development and Evaluation of Advanced Hydride Systems for Reversible Hydrogen Storage

Joseph W. Reiter, Jason A. Zan, Robert C. Bowman, Jr., & Son-Jong Hwang (Caltech)

Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA 91109-8099

May 20, 2009

Project ID # STP_38_Reiter

This presentation does not contain any proprietary or confidential information

Timeline

- Project start date: April, 2005
- Project end date: Dec., 2009
- 80 % complete

Budget

- Expected total project funding: – \$1.859M (DOE)
- Funding received in FY08:
 \$487.2K (DOE)
- Funding received for FY09:
 \$500.0K (DOE)

Barriers/System Targets

- A. System Weight and Volume
 - 2010 Targets: 6 wt.% & 45 gH/L
- D. Durability/Operability
 - 2010 Target: Life of 1000 cycles
- E. Charging/Discharging Rates
 - 2010 Target: Fill time of 3 min for 5 kg H_2
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- Participant in DOE MHCoE collaborations with partners in all four sub-group Projects, primarily with Caltech, SNL, ORNL, U. Utah, HRL, NIST, Ohio State, U. Hawaii in FY08-09
- Limited collaboration on inter-Center activities with Hydrogen Storage Engineering Center of Excellence (HSECoE)
- International: IFE (Norway), Tohoku U. (Japan), and AIST (Japan)

Relevance: Objectives

Overall Goal/Primary Objective

Develop and demonstrate light-metal hydride systems that meet or exceed the 2010/2015 DOE goals for on-board hydrogen storage through the validation of storage properties and reversibility in light element hydrides

- Nanophase, destabilized hydrides based upon LiH, MgH₂, & LiBH₄
- Complex hydrides (e.g., amides/imides, borohydrides, & AlH₃-based hydrides)
- Samples provided by numerous MHCoE partners, as opportunities are presented

Tasks

1. Phase Identification:

Perform NMR characterizations of phase relations for Li-Mg-Al-N-H, Li-B-Mg-H, and Li-Sc-B-H systems, with attention to suitability for cycling, as per:

- Reversibility
- Kinetics, towards meeting DOE delivery and refueling targets
- \blacktriangleright H₂ storage parameters, with attention to approaching the 2010/2015 goals

2. Reaction Pathways:

Characterize phases & chemical bonding via MAS-NMR (Caltech) to better understand basic chemisorption processes.

- Li amides/imides/alanates
- Borohydrides
- Other hydrides provided by MHCoE partners

3. Cycling Stability:

Extended cycling tests had been postponed through early FY2008 since no primary candidate was identified; progress has been made to accomplish this investigation with $Ca(BH_4)_2$ in FY2009.

4. Hydride Bed Design:

This engineering sub-task was postponed and then shifted out of MHCoE into the new Hydrogen Storage Engineering Center of Excellence (HSECoE) for FY2009.

• Milestones (excerpted from 2008 Annual Operating Plan where appropriate)

Milestone	Date	Status
Perform NMR characterization study of reaction pathways and bonding in the M-B-H (M=Ca, Mg, Li) system (Task 2)	3/08	40%: milestone added late in FY2008; work will continue into FY2009
Complete NMR characterization studies of phase relations for Li-Mg-Al-N-H system, Li-B-Mg-H, and Li-Sc-B-H phases (Task 1)	6/08	90%: Li-Sc-B-H paper submitted, Li- Mg-Al-N-H work continues (U. Utah), focusing on Li-B-Mg-H in early FY2009
Complete initial degradation study on either a destabilized system (i.e., Li-Mg-Al-N-H) or a more promising TBD complex hydride (Task 3)	9/08	15%: Task shifted to FY2009; planning for extended cycling of $Ca(BH_4)_2$
Generate a Review Report on the state-of-art metal hydride storage vessels from literature sources including assessment of models that can analyze and predict hydride bed behavior (Task 4)	9/08	25%: (MHCoE Project E discontinued during FY2008)
Perform detailed 2-phase system engineering and thermal performance modeling studies on metal hydride demonstrator beds (Task 4)	9/08	50%: (MHCoE Project E discontinued during FY2008)

 Engineering (Project E) work has shifted to the new Hydrogen Storage Engineering Center of Excellence (HSECoE) in FY2009

 Multi-disciplinary Analysis and Characterization of Selected Hydrides to Elucidate Fundamental Processes

Thermo-volumetric measurements

- Determinations of fundamental hydrogen storage capacities and equilibrium pressures on destabilized nanophase and complex metal hydrides
- "Magic Angle" Spinning Nuclear Magnetic Resonance (MAS-NMR)
 - Measurements are performed at Caltech Solid State NMR Facility (CSNF, Dr. Son-Jong Hwang, lead) to assess the phase compositions and chemical bonding parameters
 - NMR analysis is identifying the character of B-H bonding and reaction pathways in the metalborohydride systems; this technique can distinguish amorphous/nanophase species that are not otherwise sensible via x-ray diffraction or vibrational spectroscopy methods

Neutron scattering spectroscopy

- Examinations of structures by neutron scattering and diffraction, etc. in collaboration with MHCoE partner NIST
- Raman spectroscopy
 - Measurements made at Caltech to determine mechanisms of desorption processes

Theoretical collaborations

– Interactions with MHCoE theory teams (i.e., UCLA/UMSL, etc.) on phases and destabilization behavior

Ca(BH₄)₂ Reaction Mechanism Study - 1

MHCoE Project B: Complex Anionic Materials

- NMR shows the crystalline phase Ca(BH₄)₂ after absorption via the powder pattern from the spinning sidebands and chemical shift position
- Following hydrogenation at 330 °C, about 57 % of boron is now present as α -Ca(BH₄)₂ : the Intermediate ~ 30%, CaB₆~ 13 %
- The use of catalyst (samples provided by SNL) showed change of crystalline polymorphs of the recovered powder ($\alpha \rightarrow \beta$). This interesting result shows various additional transformations among different polymorphs around the reaction temperature

Technical Accomplishments Ca(BH₄), Reaction Mechanism Study - 2

- NMR identifies Desorption/Absorption of Ca(BH₄)₂ at low temperatures (<350 °C) typically show residual Ca(BH₄)₂, Ca-B-H intermediate (-20 ppm), and CaB₆
- The Ca-B-H intermediate is not yet fully characterized while its chemical shift is very close to CaB12H12 (sample provided from SNL). Dissolution of the desorbed material in water did not show the presence of [B₁₂H₁₂]²⁻ phase, unlike LiBH₄ or MgBH₄ cases¹

¹ Hwang, S.-J. et al. *The Journal of Physical Chemistry C* **2008**, *112*, 3164

M(B₁₂H₁₂)_n Characterization

MHCoE Project B: Complex Anionic Materials

- Various dodecaborane samples were characterized by NMR and other spectroscopic tools in collaboration with SNL, S. Jalisatgi (U. Missouri-Columbia), J.-C. Zhao (OSU), T. Udovic (NIST)
- ¹¹B MAS NMR spectra show characteristic down field shifts for M= alkali metal vs alkali earth metal cations, and quadrupole coupling constants were varied in ~ 100 kHz range; the BH₄ icosahedrons becomes highly mobile (sharp center NMR line as for Mg) as water molecules are introduced to the crystalline phases
- Removal of crystalline water becomes a challenging issue for certain metals (e.g. Mg)
- NMR remains an excellent tool for characterizing the details of these complex B-H systems

Reactivity of $Li_2B_{12}H_{12} \cdot n(H_2O) - 1$

 Dehydrogenation to 500 ° C of 525 mg of material yields an initial 3.7% loss, with most activity occurring between 300-400 ° C

MHCoE Project B: Complex Anionic Materials

Direct dehydrogenation of $Li_2B_{12}H_{12}$ material was attempted in order to elucidate reaction pathways in the M-B-H system (M = Li, Mg, Ca)

Reactivity of $Li_2B_{12}H_{12} \cdot n(H_2O) - 2$

MHCoE Project B: Complex Anionic Materials

- Based on several experiments, it appears that in the MB₁₂H₁₂ system (M = Li, Mg, Ca), high affinity with H₂O results in B-OH formation during heating, even as water is being removed
- The presence of water in these material systems proves a universal difficulty in practice as there are several hydration states in each system

Destabilizing Reactions of $M(B_{12}H_{12})_n$

MHCoE Project A: Destabilized Hydrides

Reaction	Description	Weight (mg)
Li ₂ B ₁₂ H ₁₂	Des 450 °C,	58.5
Li ₂ B ₁₂ H ₁₂	Reabs 450 °C, 90 atm H ₂	47.2
Li ₂ B ₁₂ H ₁₂ + 6MgH ₂	Des 400 °C	77.5
Li ₂ B ₁₂ H ₁₂ + 6MgH ₂	Reabs 300 °C	74.4
Li ₂ B ₁₂ H ₁₂ + 2CaH ₂	Des 400 °C	54.5

- $Li_2B_{12}H_{12} + MH_2$ (M=Mg, Ca) which were reported¹ to have favorable ΔH_{react} appear to show high kinetic barrier
- ¹¹B MAS NMR results show little change in B-H coordination from initial dodecaborane structures

¹ Ozolins, et.al., J. Am. Chem. Soc. 2009, 131, 230.

Heating Rate Effects on Li₃AlH₆+Li₂NH

- System has 7.2 wt% H₂ capacity; all samples were prepared by jar-rolling/ball-milling for 80 hours, dehydrogenated at 300° C in vacuum for 6 hours (collaboration with Z. Fang at U. Utah)
- Preferential formation of AIN or Li₃AIH₆ depends on heating rate¹; Li₃AIH₆ formation needs heating rate of 5 °C/min, and T_{react} > 250 °C
- MAS-NMR proves a good probe of pathways via ²⁷AI spectra

¹ Jun Lu, et al. J. Power Source, **2008**, *185*, 1354.

Characterization of AIB₄H₁₁ - 1

- Material provided by ORNL; effort was a collaboration among JPL, Caltech, ORNL & Ohio State
- Extensive characterization of this new material from ORNL included volumetric work showing 11.4% content (at 400°C); *significant H2 release occurred in the range 140-200*°C
- Initial NMR spectra revealed a complex boron environment in the products, including both B-H complexes and (possibly) elemental boron with other features, partially avoiding the B₁₂H₁₂ route

Characterization of AIB₄H₁₁ - 2

MHCoE Project B: Complex Anionic Materials

- MAS NMR spectra collected during systematic study of the desorption/reabsorption pathways in AIB₄H₁₁¹
 - (a) ¹H NMR suggests partial reversibility of an H₂ bearing phase
 - (b) ¹¹B NMR shows the complexity of the boron environment, as compared to reference AlB₂ and a-B phases
 - (c) ²⁷AI NMR following reabsorption suggests the possibility of reduced AI metal, but this is a topic for further study

¹ Ji-Cheng Zhao, et.al, J. Phys. Chem. C, 2009.

- With the transfer of engineering roles out of *Project E* to the new Hydrogen Storage Engineering Center of Excellence (HSECoE), JPL's roles in this area were shifted out of MHCoE in FY09
 - Support development of more efficient hydride storage vessels to reduce storage system mass while retaining viable thermal management during H₂ absorption & desorption.
 - Support system design and analyses using methods and analytical models established at JPL for sorption cryocooler hydride compressor beds.
 - Perform literature review on hydride bed design techniques and approaches
- JPL retains engineering functions as a direct partner in HSECoE as well as informal/formal communications via the Engineering Materials Working Group (POC D. Anton, SRNL)
 - See JPL Poster in Engineering session, stp_10_reiter

Proposed Future Work

Project A - Destabilized Hydride Systems

- [FY09] Investigate the potential for structured carbon-based materials (aerogels, graphitic carbons, high-surface area materials) as dopants in destabilized hydride systems utilizing volumetric, NMR, and XRD techniques
 - Investigate pore size effects
 - (potential collaborations with Caltech, SRNL, HRL, NIST)

Project B - Complex Anionic Materials

- [FY09] Continue phase transformation and reversibility studies of the Ca(BH₄)₂ system in collaboration with MHCoE partners, lending support with volumetric characterizations as well as MAS-NMR, XRD, and Raman analytical techniques
 - Assess initial cycling data for n~10-100 cycles
 - (SNL, Caltech, U. Hawaii)
- [FY09-10] Continue studies of possible destabilization routes in material systems containing the [B¹²H¹²]⁻² anion, especially as it pertains to avoiding the production of this stable intermediate in the Mg-B-H, Li-B-H, Ca-B-H and mixed cation borohydride systems
 - Investigate reaction pathways and bonding
 - Consultation with theory groups
 - (Caltech, SNL, NIST, UCLA, UMSL)

Project C - Amides/Imides

- [FY09-10] Perform systematic investigations of ¹⁵N-enriched amine-borohydride materials, leveraging MAS-NMR techniques for the purpose of assessing reaction kinetics, bonding dynamics, and phase transformation effects in the *M*-B-N-H system (M = Li, AI, Mg), especially for mixed cation and/or ternary systems
 - (ORNL, Ohio State, U. Utah)

• Approach

 Systematic characterizations of phase formation and hydride reversibility using solid state NMR and volumetric measurements (Projects A, B, C, & D)

Technical Accomplishments

- Phase characterization, kinetics (i.e., diffusion behavior), & reversibility assessments via MAS NMR in numerous systems (i.e., Li-Mg-B-H, Li-Sc-B-H, Li-B-Ca-Al-H, AlH₃, Li-Mg-Al-N-H)
- NMR analysis is identifying the character of B-H bonding and reaction pathways in the metal-borohydride systems; this technique can distinguish amorphous/nanophase species that are not otherwise sensible via x-ray diffraction or vibrational spectroscopy methods

Collaborations

- Caltech, U. Utah, SNL, Ohio State, ORNL, HRL, NIST, U. Hawaii, SRNL, & UTRC

Future directions

- Continue aggressive investigations of destabilization routes in the MB₁₂H₁₂ system
- Perform systematic multi-spectroscopic study of results from Ca(BH₄)₂ cycling
- Utilize NMR methods within ¹⁵N-enriched amide/imide systems