2009 U.S. Department of Energy Hydrogen Program Annual Merit Review and Peer Evaluation Meeting Registration Crystal Gateway Marriott, Arlington, VA May 20, 2009

Effect of Trace Elements on Long-Term Cycling/Aging Properties and Thermodynamic Studies of Complex Hydrides for Hydrogen Storage

Dhanesh Chandra, Pl

Research Associates and Students:

Josh Lamb, Wen-Ming Chien, Ivan Gantan (Graduate Student)

Materials Science and Engineering Division Chemical and Metallurgical Engineering, MS 388 University of Nevada, Reno (UNR) Reno NV 89557

May 20, 2009

This presentation does not contain any proprietary or confidential information

UNF

Overview

Timeline Project start date – FY05 Project end date – FY10 Percent complete – ~80%	Barriers Addressed A. System Weight and Volume D. Durability/Operability E. Charge/Discharge Rates
Budget	MHCoE Partners
Total project funding (5yrs.) : \$ 1.5 M (Requested)DOE share (5yrs.): \$ 1.2 MContractor share (5yrs.): \$ 301 KFunding received in FY07: \$ 250 K (Includes funding for major equipment)	 Active Current Collaboration Sandia National Laboratories, CA – L. Klebanoff, E. Ronnebro (now at PNNL) Ohio State University – Dr. J.C. Zhao Oak Ridge National Laboratory, Neutron Center, Dr. A. Huq University of Geneva, Switzerland, Prof K. Yvon, Prof. R. Cerny, Dr. D. Phanon, Dr. N. Penin University of Rome, Prof. R. Cantelli University of Paris/CNRS- Dr. M. Latroche
Funding received in FY08: \$100 K So far Funding for FY09: As Planned	 <u>Future Collaboration</u> NIST Gaithersburg, Maryland - Dr. Terry Udovic Brookhaven National Laboratories, NY – Dr. James Reilly European Commission - DG Joint Research Centre - Institute for Energy, Petten- Dr. Constantina Filiou

Relevance

A. <u>General</u>:

- The "Grand Challenge" program launched by DOE for research and development of hydrogen storage technologies was designed to meet targets for commercially viable systems for vehicular applications.
- Research is being conducted at different three hydrogen storage Centers of Excellence, amongst them is our *Metal Hydrides Center of Excellence* to address issues of board hydrogen storage technical barriers.
- At Uni. of Nevada, Reno (UNR) we address topics related to: (1) System weight and volume, (2) Durability/operability, and (3) Charging and discharging Rates and part of life cycle assessment addressing the environmental impact for hydrogen storage (excluding costs).
- B. Impact of Impurities on Long-term Durability and Understanding Reaction Pathways of the Complex Hydrides

1. Objectives:

- Determination of the effect of ppm level impurities in H₂ gas, and impurities and defect in light-weight storage materials.
- Li-N light weight based compounds used to evaluate long-term durability,
- Understanding the reaction pathways for both developing new materials with enhanced hydriding properties, modifying or controlling reaction pathways for improved performance
- Results obtained in this research are expected to have direct impact on addressing of the barriers to improve the kinetics, lower hydrogen release temperatures, and longer cycle life.
- 2. Relevance to Addressing On-board Hydrogen Storage Specific Technical barriers:
- 1. <u>System Weight and volume</u>: Identified materials systems: Li-N-H, Li-Al-N-H and other light weight materials for studies.
- 2. <u>Durability:</u> Addressed these issues by using industrial hydrogen as well as various individual impurity gas mixtures in hydrogen gas.
- 3. <u>Charging /Discharging:</u> Reaction pathways found; the work is in progress
- 4. <u>Life cycle assessments:</u> Addressed only the environmental impact for hydrogen storage via relating to effects of oxygen, water vapor and related gas effects.

Approach

- A. Basis for Selection of Li-N-H system Was To Address the barrier on System weight:
- > Light-weight Li-N-H system with ~10.5 wt.%H capacity at the start of the program.
- Results are expected to have broader implications to give insight to other hydrides (mixtures of amides-alanates, amide-magnesium hydrides and others).
- B. <u>Durability/Operability and Life cycle environmental effects</u>
- Trace Impurity Impact on Long-term Durability: In practical applications, trace impurities in commercial hydrogen gas (such as dispensed at future H₂ gas stations) will have an impact on the hydrogen loading capacities during periodic recharging with fresh hydrogen.
- Approach: To determine the effects of gaseous trace impurities (ppm levels of O₂, CO, H₂O, CH₄, NH₃ etc. in H₂) on complex hydrides after prolonged hydrogen pressure cycling and thermal aging. Note: NH₃ is not a common impurity in H₂ gas itself, but there is an potential of ppm level emission at higher temperatures, so we checked its environmental effect.
- Update: Effects of using industrial hydrogen up to 1100 cycles in Li-N-H system are already reported. Pressure cycling (~500 cycles) using 100 ppm level O₂ impurity in UHP H₂ as well as thermal aging (CO impurity) of mixed phase Li₃AlH₆-LiNH₂ have been completed. These results may be extrapolated to higher cycles.
- C. Addressing Charging/Discharging Rates and Applied Thermodynamic Studies
- Our earlier in-situ neutron and x-ray diffraction experiments were difficult to interpret, as far as phase equilibria was concerned. Some phases appeared at room temperature and in the in-situ experiments at higher temperatures. So, applied thermodynamic calculations were performed.
- Also, controlled loading of H₂ in Li₃N using Sievert's apparatus and analyzing the products by x-ray diffraction yielded very important phase stability information, and formation of new phases. Thermodynamic calculations using CALPHAD method agree with the experimental results.

Li-N-H System (Gas Impurity effects)

- Made progress in cycling tests on Li-N-H system to determine the effect of various gaseous impurities in H₂ (100 ppm level of O₂, CO, H₂O, CH₄, NH₃) to simulate the charge/discharge with fresh H₂ in Li-N-H hydrides.
- The effect of NH₃ gas impurity isothermal (255°C) and isobaric aging at 6.2 bar H₂ performed using 100 ppm NH₃ in H₂ revealed no loss in hydrogen capacity.

Applied Thermodynamics and Crystallographic Studies

- ➤ Critical phase reaction pathways determined using progressive incremental loading of hydrogen in Li₃N, supported by the CALPHAD developed Li-N-H Phase diagrams (only phase fields are outlined here- note there is possibility of Li₄NH phase at 255°C, yet to be confirmed): At 225°C : Li₃N(s) + H₂ → Li₂NH(s) + Li₃N(s) + Li(l)(≤~ 3wt.%H) → Li₂NH(s) + LiH + Li(l)(~ 3 ≤ 5wt.%H) → Li₂NH(s) + gas + LiH(s)(~ 5 ≤ 9.5wt.%H) At 25°C : Li₃N(s) + H₂ → Li₃N(s) + Li₂NH(s) + Li₄NH(s)(≤~ 2.5wt.%H) → Li₂NH(s) + LiH(s) + Li₄NH(s)(~ 2.5 ≤ 5wt.%H) → Li₂NH(s) + gas + LiH(s)(~ 5 ≤ 9.5wt.%H)
- > Determined formation of the Li₄NH phase at room temperature; this phase is stable up to ~5 wt.%H and is peritectically decomposed phase observed @25°C: $Li_2NH(s) + Liq_2 \rightarrow Li_4NH(s)$
- > Details of the amount of LiH phase formed under equilibrium loading of hydrogen presented.
- New higher hydrogen capacity cubic phase of Li_{2-x}NH_{1+x} type was found (details are subject of a manuscript).
- Improved kinetics observed at higher pressures in the Li-N-H system.

Experimental Apparatuses for Pressure Cycling and Thermal Aging

Sample Pressure Cycling Data of Complex Hydrides. Monitoring of Kinetics During Pressure Cycling at UNR

Equipment and Testing Methodology (University of Nevada, Reno (UNR).

- ➤UNR has fully functional low pressure (~2 bar) and high pressure (~120 bar) cycling apparatus that can operate up to ~400°C.
- The chosen materials are subjected to predetermined number of pressure cycles (500-1500) with fresh charge of impurity mixed UHP H₂. In addition we have fully automatic Sievert's apparatuses, and in-situ hydrogen x-ray diffraction capabilities (not shown), HP DSC, TGA etc.

Automatic Pressure Cycling Apparatus at UNR Showing >20 pressure cycles - LiNH₂-Li₂NH

Instruments Used

Dual -120 Bar Pressure Cycling Apparatus and Sievert's Apparatus Combined Front Panels

120 bar H₂ Pressure Cycling apparatus -2 bar H₂ (back Panel)

-6-

Pressure Cycling apparatus -2 bar H₂

-7-

Ammonia-Hydrogen Aging Effects

Experiment

There was concern that NH_3 emissions in the hydriding or dehydriding imide-amide system. We were very concerned, and estimated very small ppm levels at this temperature. At higher temperatures 350°C or so, there may be problems.

Although NH₃ may not be a contaminant in commercial hydrogen gas, we decided to check it effects by purposely mixing NH₃ in H₂, and pressure cycle at 255°C *Summary of Results*

Thermodynamic: Figure- top right

- 1. Isotherm taken without any NH_3 present in the H_2 gas (reference- red triangles)
- 2. The isotherm (blue squares) obtained with 100 ppm NH₃-H₂ 72 hours (255°Cat 6.3 bar) thermally aged sample showed virtually no change in the hydrogen capacity. (more aging experiments are being performed)
- 3. It is concluded that ppm levels of NH_3 are not harmful to the Li-N-H system at 225°C with these conditions.

Crystal Structure (Ex-situ x-ray diffraction Studies):

- 1. Patterns (blue) without NH_3 (taken at low pressure, LP, <<1.3 ²⁰⁰⁰ bar) showed predominantly Li₂NH phase, some impurity phase Li₂O, as expected.
- 2. Patterns (red) with 100 ppm $NH_3 @ 6.3$ bar showed mainly, $LiNH_2$, LiH, and small amount of Li_2O phase. These are also expected phases under the pressure conditions.

Isotherms Li₃N-H₂ with and without low levels of NH₃

XRD patterns from Hydrides with and without NH₃ additions - corresponding the isotherms shown above.

Isotherm obtained from Li₃N-H at 255°C (at Uni. of Geneva)

Pressure [Bar]

The low pressure isotherm (inset) was obtained at UNR, Reno, showing compositions of different Phases formation; for example, LiNH₂ forms at 1.2 box H

Н

Ν

mass fraction

Effect of Pressure on Kinetics and Formation of LiNH₂ Phase

Experiment

Point No.8. Photo of the Sintered Powder after Hydriding (5.2 bar applied at once)

- To determine the effect of pressure on loading the same amount of hydrogen (~4.6 wt.%) 1.
- 2. To determine phase evolution of LiNH₂

Summary

Related the Figure -top left

- **Point No.8**: For a H capacity of 4.6 -4.7 wt. H (Maximum Hydrogen loading P@~0.9 bar) 1. The $P_{equilib} \cong 0.1272$ bar (at Point 4 in the Isotherm); we observe slower kinetics

 - **Point No.4** :For the same H capacity, at higher $P_{equilib.} \cong 3.38$ bar we observe significantly faster kinetics (see the Figure to the left showing three different textures of the powders obtained) Maximum Hydrogen loading pressure ~3.5 bar. LiNH2 is easier to dehydride.

X-ray results	Hydrogen conc. (wt.%)	wt.% LiNH ₂	wt.% Li _{2-x} NH _{1+x}	wt.% Li₃N	wt.% Li ₂ O	wt.% LiH	wt.% Li₄NH
point 4 bottom	4.7123	0	72	11	2.5	12.5	2
point 8 bottom	4.6423	50.5	8	1	2.5	38	0
point 9	9.5456	46.5	16.5	0	4	33	0

UNR-Uni. of Geneva, IEA Collaboration

Formation of new Li₄NH Phase at Room Temperature after Hydriding

Experiments:

- To determine the Evolution of Phases by loading hydrogen in Li₃N
- >In-situ x-ray diffraction experiments were also performed at UNR to observe if Li₄NH forms at 255°C at low pressures,
 ~0.002-0.003 bar (results not shown for brevity).

≻<u>Results</u>

- At 255°C (initially, for example @ 1 wt.%H) there is initial formation of small amount of Li (liq.)+ Li₂NH phase, and possibly Li₄NH (yet to be confirmed).
- When cooled to room temperature the Li₂NH+Liq. phase decomposes peritectically to Li₄NH.
- The variation of Li₄NH. Li₃N and LiH phases are shown in the Figure. Data obtained after cooling the samples to 25°C. Summary

- ➤ The Li₄NH is no longer stable above ~ 5 wt.%H.
- The structure was reported by R. Niewa and D.A. Zherebtsov, Zeitschrift Fur Kristallographie-New Crystal Structures, 217(3), 317-318 (2002), and by E. Weidner D.J. Bull and I.L. Shabalin, Chemical Physics Letters, 444(1-3), 76-79 (2007).

-12-

Amount of Phase as a function of Eq. 9 Hydrogen Loading (@25°C)

Phase Evolution after Loading ~1 wt.% and ~8 wt.% H in Li₃N (Ex-situ Experiments)

Experiment

To determine stability of Li₄NH phase at various amounts of hydrogen loading.

Results

 Maximum amount of Li₄NH phase was present at point No.1 indicated in the PCT.

Summary

The Li₄NH Phase forms at lower concentrations

of hydrogen up to~4.89 wt.% H (point 13 in the PCT)

>There is no Li_4NH phase at ~8 wt.% H as indicated in the table.

$Li_{2-x}NH_{1+x}$ and $LiNH_2$ Phase Evolution During Loading of Hydrogen in Li_3N

Experiment: Several hydrogen loading experiments were performed and XRD Patterns obtained after the experiments was terminated. The amount of hydrogen loaded was recorded as shown along with XRD patterns.

It should be noted that these experiments were done in controlled manner such the pressure did rise above ~1 to 1.2 bar at each loading.

Summary of the Results

- XRD data taken at room temperature showed that a new cubic phase evolved ; Li_{2-x}NH_{1+x}
- 2. This phase is shown by the shifts in the cubic phase Bragg peaks in the inset above.
- Under equilibrium conditions the LiNH₂ phase does not form until about ~9 wt.%H. Some isolated peaks for LiNH₂ are shown in the pattern.
- 4. At about 9 wt.% there is equilibrium between Li_{2-x}NH_{1+x} and LiNH₂

X-Ray Diffraction Patterns taken after hydriding at different H-compositions at 255°C and cooling the Samples to Ambient Temperature

UNF

Collaborations

IEA Collaboration, Primary Contact: Prof. K. Yvon, PI's sabbatical leave research 2008 *Type of Institution:* University *Extent:* Research related to US DOE H₂ program working on applied crystallography and thermodynamics on LI-N-H system.

Uni. of Paris/CNRS	IEA Collaboration, Primary Contact: Dr. M. Latroche. PI's sabbatical leave research 2008, <i>Type of Institution:</i> University/National Lab., DOE H ₂ program: <i>Extent:</i> Syntheses of Substituted complex hydrides
--------------------	--

Synchrotron Center, Grenoble	Synchrotron Studies, Primary Contact: Dr. Y. Filinchuk <i>Type of Institution:</i> ESRF, France, related to DOE H ₂ program <i>Extent:</i> in-situ Synchrotron XRD studies on complex hydrides.

	MHCoE Collaboration, Primary Contact: Dr. L. Klebanoff, and E.
Sandia National Laboratories	Ronnebro (now at PNNL). <i>Type of Institution:</i> US National Laboratory, related to DOE H ₂ program. <i>Extent:</i> In-situ hydriding studies on complex hydrides

Proposed Future Work

- 1. Effect of Impurities on Complex Hydrides and Defect Structure analyses
- □ Thermal aging studies (100 ppm O₂, CO, CO₂, H₂O, CH₄, NH₃, and others mixed with UHP H₂) on complex hydrides are in progress using the automated cycling/aging apparatus shown in the above slides. We now plan to study degradation behavior more closer to practical situation in vehicles.
- 2. In-Situ High Resolution X-ray Diffraction Studies on Hydriding/Dehydriding
- In-situ X-ray (UNR/ESRF/LBNL) will continue to obtain <u>newly</u> developed hydride samples from MHCoE partners to understand the reaction pathways towards development of improved hydrides for vehicular applications.
- 3. Collaboration with the MHCoE Theory Groups
- We plan to interact with computational modeling researchers in the MHCoE group to correlate experimental results towards understanding of the structure and the dynamics of hydriding and dehydriding.
- 4. International collaboration with Universities and other European Union (EU) Partners
- We will continue IEA collaboration with Uni. of Geneva, Paris/CNRS, and Rome. We have started collaboration with the EU team on developing catalyst for the Li based hydride systems. We at (UNR) had discussions with the DG Joint Research Centre -Institute for Energy, Holland.
- 5. Vaporization Mechanisms of Complex Hydrides
- Vapor phase determination towards understanding reaction of pathways/disproportionation of borohydrides.

Summary – 1

In support of the DOE's MHCoE mission, some critical aspects related to long-term stability of light weight complex hydrides for vehicular applications are addressed. Durability/operability of complex hydrides was evaluated to understand the role of ppm gaseous impurities in hydrogen gas experienced during periodic filling at a <u>commercial hydrogen gas station</u> for future H₂vehicles.

Li-N based compounds are used to evaluate long-term durability, reaction pathways for both developing new materials with enhanced hydriding properties, modifying or controlling reaction pathways for improved performance.

Pressure extrinsic cyclic testing using fresh charges of industrial hydrogen with several gaseous mixtures of 100 ppm levels of O₂, CO, CO₂, H₂O, NH₃, CH₄, in H₂, revealed O₂ and H₂O have the greatest impact.

Reaction pathways to overcome barriers that exist to improve the kinetics, lower hydrogen release temperatures, and longer cycle life are being determined. An example of stepwise incremental *hydrogen* loading is shown for Li₃N-H that exhibit three primary phase boundaries. stable phases at different H wt.% ranges are given below based on experiments:

 $At \ 225^{\circ} C : Li_3 N(s) + H_2 \longrightarrow Li_2 NH(s) + Li_3 N(s) + Li(l) (\leq \sim 3wt.\%H) \longrightarrow$

 $Li_2NH(s) + LiH + Li(l)(\sim 3 \le 5wt.\%H) \longrightarrow Li_2NH(s) + gas + LiH(s)(\sim 5 \le 9.5wt.\%H)$

 $At \ 25^{\circ}C: Li_3N(s) + H_2 \rightarrow Li_3N(s) + Li_2NH(s) + Li_4NH(s) (\leq \sim 2.5wt.\%H) \rightarrow$

 $Li_2NH(s) + LiH(s) + Li_4NH(s)(\sim 2.5 \le 5wt.\%H) \rightarrow Li_2NH(s) + gas + LiH(s)(\sim 5 \le 9.5wt.\%H)$

> The above results were confirmed by Phase diagram obtained by CALPHAD modeling

Summary – Cont'd

- > Determined formation of the Li₄NH phase at room temperature; this phase is stable up to ~5 wt.%H and is peritectically decomposed phase: $Li_2NH(s) + Liq_2 \rightarrow Li_4NH(s) @ 25^{\circ}C$
- Isobaric and isothermal thermal aging at 225°C revealed that 100 ppm level of NH₃ impurity exhibited virtually no loss of hydrogen capacity, whereas CH₄ impurities have lower impact.
- There are indications that better kinetics of hydriding can be achieved at higher than equilibrium pressures.
- > New non-stoichiometric Li_{2-x}NH_{1+x} cubic phases with higher H-capacity found.

Sabbatical leave Work:

Please note that the PI (D. Chandra) was on sabbatical leave at Uni. of Geneva, Uni. of Paris/CNRS, and Uni. of Rome in 2008. The crystallography and thermodynamic experiments were performed in Geneva. Additional thermodynamic work, cycling/thermal aging experiments, and in-situ x-ray diffraction work was done at Uni. of Nevada, Reno.

Acknowledgements

We are very grateful to the US DOE-MHCoE for the support of this Project.

We thank Dr. Gary Sandrock for his valuable comments on NH₃ issues in in amide-amide system.

We are also grateful to researchers from K. Yvon, R. Cerny, N. Penin, and D. Phanon, M. Latroche R. Cantelli, and Y. Filinchuk for their valuable contributions, and support of the facilities for this research during the PI's sabbatical leave work.

We thank E. Ronnebro (now at PNNL), and J.C. Zhao of OSU for collaboration Mg-and Ca-Borohydride. We also thank Dr. A. Huq of ORNL for her collaboration on neutron diffraction studies.

UNF