Amide and Combined Amide/Borohydride Investigations

J. Gray [#], L. Dinh [#], M. Bharaty^{*}, H. zur Loye^{*} and D. Anton [#]

#Savannah River National Laboratory

*University of South Carolina

May 20, 2009

Project ID #: STP_40_Anton

This presentation does not contain proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: 10/1/05
- End: 9/30/10
- Percent complete: 50%

Barriers Addressed

- A. System Weight and Volume
- E. Charging/Discharging Rates
- P. Understanding of Hydrogen Chemisorption

Budget

- FY'08 Funding
 - \$100K
- Planned FY'09 Funding
 - \$400K

Partners

- Z. Fang University of Utah
- H. zurLoye University of South Carolina
- E. Ronnebro SNL (now PNNL)

Relevance: LiMgN as a Hydrogen Storage Material $LiNH_2 + MgH_2 \rightarrow LiMgN + 2H_2$

- Identified with DFT calculations performed by Alapati and colleagues as potentially reversible with reasonable H₂ storage content

 (Alapati *et al*, *Phys. Chem. Chem. Physics.* 9 1438 (2007)
- Theoretical H_2 gravimetric storage capacity of system is 8.2 wt%
 - Experimentally, 8.1 wt% was observed by Lu et al. under moderate temperature (160^oC 220^oC) using TGA (Lu et al., J. Phys. Chem. C, 111,pp. 12129. (2007))
- Recharge theorized by Lu et. al. to take different pathway
 - Theoretical H₂ storage capacity is 8.2 wt% (8.0 wt% observed experimentally at 160 °C and 140 bar in pressure vessel)

 $LiMgN + H_2 \leftrightarrow \frac{1}{2} Mg(NH_2)_2 + \frac{1}{2} MgH_2 + LiH$

• Dehydrogenation is proposed to proceed through an intermediate step

 $\frac{1}{2} Mg(NH_2)_2 + \frac{1}{2} MgH_2 + LiH \rightarrow Li_{2x}Mg_{1-x}(NH)_2 + MgH_2 + H_2 \rightarrow LiMgN + H_2$

• Accelerated reversibility has been observed using 4 wt.% TiCl₃ dopant by Lu et al.

Li-Mg-N-H Systems Published in Literature

- Li_xMg_y-amide materials have been studied by numerous groups which have cited both NH₃ production and high discharge temperatures as limiting their utility
- Various compositional ratios of these compounds have been investigated to determine experimental hydrogen storage capacities, reaction pathways, reversibility, and rate of hydrogen release:
 - $\text{LiNH}_2 + \text{MgH}_2 \leftrightarrow \text{LiMgN} + 2\text{H}_2$ (Lu et al. J. Phys. Chem. C, **111** ,pp. 12129. (2007); Alapati et al, Phys. Chem. Physics. 9 1438 (2007))
 - $Mg(NH_2)_2 + 2LiH \leftrightarrow Li_2Mg(NH)_2 + 2H_2$ (Xiong et al, Adv. Mater. 16 1522 (2004))
 - $3Mg(NH_2)_2 + 8LiH \leftrightarrow 4Li_2NH + Mg_3N_2 + 8H_2$ (Leng et al, J. Phys. Chem. B. 108 8763 (2004))
 - $3Mg(NH_2)_2 + 12LiH \leftrightarrow 4Li_2N_3 + Mg_3N_2 + 12H_2$ (Nakamori *et al*, J. Power. Source. **138** 309 (2004))
 - $2\text{LiNH}_2 + \text{MgH}_2 \leftrightarrow \text{Li}_2\text{Mg(NH)}_2 + 2\text{H}_2$ (Luo, J. Alloys Compd. **381** 284 (2004) / Rijssenbeek *et al*, J. Alloys Compd. **454** 233 (2008))

Primary issues remain hydrogen storage content, discharge and charge temperatures, kinetics, reversibility, and hydrogen purity

Objectives

- Collaborate with University of Utah group perform complementary experiments to analyze the LiMgN system
- Verify reversibility conditions of TiCl₃ doped LiMgN
- Explore the effect of catalyst loading on both charge and discharge reaction pathways and kinetics.
- Outline discharge and charge kinetics under various temperature and pressure conditions to prepare for hydrogen storage system design

Experimental Plan

- Perform isothermal kinetic studies under well-defined, controlled reaction conditions
- Experimental conditions to be explored:
 - Discharge Kinetics
 - Charge Kinetics
 - Effect of Composition Li:Mg:M_{tr}

 $M_{tr} = Ti, V, Cr, Ni...$ composition = [0.5 mol% – 6 mol%]

- XRD analysis at various points in hydrogenation/dehydrogenation cycle
- <u>Deliverable</u>: Experimental data required to determine isothermal kinetics and characterize the proposed reaction for hydrogenation and dehydrogenation of LiMgN

Material Synthesis and Experimental Procedure

Synthesis

- All materials prepared using Frisch mill rotational milling technique
- FM for 3 hrs at 500 rpm, with rotational direction reversed every 3 min
- All reactors are loaded in an inert Ar glove box
- Standard discharge condition: 280°C/1 bar/6 hr
- Standard charge condition: 180°C/150 bar/6 hr

Discharge Procedure

- Reactor is placed under high pressure (~150 bar) and heated to desired temperature
- Manifold is controlled so that when the reactor is released to the reservoir, the nominal backpressure is equal to 1 bar
- Temperature Programmed Desorption (TPD) performed at 2°C/min into 1 bar reservoir pressure

Charge Procedure

- Reactor is placed under active vacuum and heated to desired temperature
- Reservoir is pressurized to the desired pressure and released to the reactor

Isothermal Recharging Data – 0.667 mol% (4 wt% TiCl₃)

•180°C selected as optimal charging condition

- •Time to 80% charge $(\tau_{80}) = 37 \text{ min}$
 - DOE target = 3 min

Discharge products are comprised of LiCl, Mg_3N_2 , LiMgN and a minor amount of an unidentified phase (< 5%). Mg_3N_2 and LiMgN nearly iso-structural with a cation disordered anti fluorite structure type.

Temperature Programmed Desorption Data – 4 mol% TiCl₃

Evidence of three reaction steps observed at 100, 200 & 260°C

Isothermal Recharging Data – 4 mol% TiCl₃

•Discharge products are similar to those obtained at 1 bar and comprised of LiCl, Mg_3N_2 , LiMgN and a minor amount of an unidentified phase (< 5%).

•Time to 80% Charge $(\tau_{80}) = 30$ min.

• DOE target = 3 min.

Discharge Kinetic Analysis of Li-Mg-N System

• Traditional kinetic analysis follows from Arrhenius equation

• Linear kinetics gives activation energy of 60 kJ/mol H₂ for discharge reaction

Discharge Kinetic Analysis Johnson-Mehl-Avrami Approximation

- $\alpha(t)=1-\exp(-kt^n)$
 - $d\alpha/dt = k*nt^{(n-1)}*exp(-kt^n)$
- $\ln(-\ln(1-\alpha)) = n\ln(t) + \ln(k)$
- Transformations between different linear segments indicative of changes in reaction mechanism

Evidence of multi-step reaction mechanism observed

Li-Mg-N Discharge Kinetics

Li-Mg-N Charge Kinetics

Bed calculation assumes 7 wt% with 5 kg H₂ stored

Catalyst loading has little effect on charging rates

Charging rate strongly affected by pressure

Technical Target Comparison

4 mol% material discharge rate is 57% of DOE technical target at 280°C 0.667 mol% material discharge rate is 24% of target at 280°C

0.667 mol% TiCl ₃ (4 wt%)		Rate [g H ₂ / (s·g _s)]	Rate 72 kg bed [*]	4 mol% TiCl ₃ (13.7 wt%)		Rate [g H ₂ / (s·g _s)]	Rate 72 kg bed*
Р	150 bar	Cha	irge	Р	150 bar	Cha	irge
	160°C	2.0 x 10 ⁻⁵	1.43		160°C	1.9 x 10 ⁻⁵	1.40
Тетр	180°C	2.4 x 10 ⁻⁵	1.73	Temp	180°C	2.5 x 10 ⁻⁵	1.80
	200°C	1.9 x 10 ⁻⁵	1.38		200°C	2.3 x 10 ⁻⁵	1.68
	220°C	1.7 x 10 ⁻⁵	1.26	Temp	180°C	Ch	ırge
Temp	160°C	Cha	ırge		70 bar	6.0 x 10 ⁻⁶	0.430
	70 bar	4.6 x 10 ⁻⁶	0.330	Р	100 bar	1.2 x 10 ⁻⁵	0.882
Р	100 bar	1.2 x 10 ⁻⁵	0.811		150 bar	2.5 X 10 ⁻⁵	1.80
	150 bar	2.0 x 10 ⁻⁵	1.43		Discl	narge	
Discharge			$\overline{\mathbf{T}} = \mathbf{280^{o}C}$	P = 1 bar	2.4 x 10 ⁻⁵	1.72	
$\mathbf{T} = \mathbf{280^{o}C}$	P = 1 bar	1.0 x 10 ⁻⁵	0.737				

*Assumes 7 wt% with 5 kg H_2 stored

Discharge temperature of 280°C needs to be decreased while maintaining current rates

Conclusions

- Desorption products at both ambient and higher pressures (1, 150 & 180 bar) appear to be the same (mixture of LiCl, Mg_3N_2 and LiMgN a minor amount of an unidentified phase (< 5%)).
- \bullet Increased catalyst loading has significant effect on $\rm H_2$ discharge rate
- Different kinetic modeling approaches are being applied to characterize and understand reaction kinetics to enable prediction of charge/discharge rates under varying engineering conditions

Future Directions

- Resolve Li_{0.51}Mg_{2.49}N_{1.83} vs. LiMgN characterization issue (IR, NMR...)
 - Further characterization of the unidentified discharge product
- Test other catalysts to render faster kinetics, lower temperatures of operation (e.g. VCl₃, NiCl₃, FeCl₃...)
- Analyze the purity of the discharged H_2 as a function of temperature using RGA and FTIR
- Conduct a study to determine the effect of milling time on isothermal kinetics

Amide-Borohydride Systems

$M(BH_4)_i(NH_2)_j$

- Tailoring the electronegativity of the metal ion M⁺ in the borohydride BH₄⁻ complex, *Nakamori et al., 2006*
- Adding secondary reactant to form a stable boron containing product, $2\text{LiBH}_4 + \text{MgH}_2 \rightarrow \text{MgB}_2 + 2\text{LiH} + 4\text{H}_2$ Vajo & Olsen, 2007
- Synthesis of new $Li_4(BH_4)(NH_2)_3$ [$Li_4BN_3H_{10}$], by mechanico-chemical milling of LiNH₂ and LiBH₄, *Chater et al.*, 2006
- Confirmation that $Li_4(BH_4)(NH_2)_3$ desorbs >10wt% H₂ at 250 °C, *Pinkerton et al.*, 2006
- Theoretical calculations revealed that $\text{Li}_4\text{BN}_3\text{H}_{10} \rightarrow \text{Li}_3\text{BN}_2 + \text{LiNH}_2 + \text{H}_2$ is only weakly endothermic, with a $\Delta \text{H} \sim 13$ kJ/mol H₂, *Siegel et al.*, 2007
- Evidence of B-H and N-H bond destabilization as compared to the parent $LiBH_4$ and $LiNH_2$ structures, *Yang et al.*, 2007

M(BH₄)_i•xNH₃

• Ammonia complex of magnesium borohydride, Soloveichik et al., 2008

$M(NH_2)_j \bullet x(BH_3)$

• Calcium amidotrihydroborate as hydrogen storage material, Burrell et al., 2007

Literature Conclusions

- Competing but related M(BH₄)_i(NH₂)_j, M(BH₄)_i•xNH₃ and M(NH₂)_j•x(BH₃) phases have been identified.
- New set of **binary anion complex compounds** $M(BH_4)_i(NH_2)_j$ exists with high wt% H_2
- Interaction between $(BH_4)^-$ and $(NH_2)^-$ reduces ΔH of sorption
- Relatively unexplored area with good potential for low temperature high capacity media

Objective

Perform an in-depth empirical study of the bimetallic borohydride/amide phase space formed in M¹M²(BH₄)_i(NH₂)_i

```
where:
M<sup>1</sup>= Li, Na, K and
M<sup>2</sup>=Mg, Ca, Ti and/or other transition metals.
```

Existing Borohydride and Amide Compounds Opportunities for Materials Discovery

Precursor 1	Precursor 2	Mixed Borohydride/Amides		ΔH _{mix} (kJ/mol H ₂) Dehydriding	
		NH ₃ BH ₃		-20	
LiH	NH ₃ BH ₃	LiNH ₂ BH ₃ [Xiong et.al. 2008]		-5	
LiBH ₄	LiNH ₂	$Li_4BN_3H_{10}$ [Chater et.al. 2006]		13	
NaBH ₄	NaNH ₂	Na ₂ BNH ₆ [Chater et.al. 2006]			
KBH ₄	KNH ₂				
$Mg(BH_4)_2$	$Mg(NH_2)_2$		opportunitie	s for novel	
$Ca(BH_4)_2$	$Ca(NH_2)_2$	materials		discovery	
M ₁ BH ₄ M ₁ =Li, Na, K, Mg, Ca	M ₂ NH ₂ M ₂ =Li, Na K, Mg, Ca				

Borohydride and Amide Precursors Used

BORO HYDRIDE	COMMERCIALLY AVAILABLE	AMIDE	COMMERCIALLY AVAILABLE
$LiBH_4$	Yes	LiNH ₂	Yes
NaBH ₄	Yes	NaNH ₂	Yes
KBH4	Yes	KNH ₂	Yes
NH ₃ BH ₃	Yes		
$Ca(BH_4)_2$	Yes	$Ca(NH_2)_2$	Synthesis via [Hino et al., 2005]
<i>Mg(BH₄)</i> ₂	Synthesized via [Zanella et al., 2007]	Mg(NH ₂) ₂	Synthesis via [Nakamori et al., 2004] or Ball milling MgH ₂ under $P_{NH_3} = 7 bar$

LiH-CaH₂-BH_x-NH_y Phase Diagram: Map of Identified Stable Compounds

Synthetic Plan for Materials M¹M²(BH₄)_x(NH₂)_v

LiNH ₂	+ $Ca(BH_4)_2$	ball milling
Calcium Borohydride Ca(BH ₄) ₂	Lithium Amide LiNH ₂	Product
1 mole	1 mole	in progress
1 mole	2 mole	$Li_xCa(BH_4)_x(NH_2)_y$
2 mole	1 mole	in progress

$LiBH_4 + Ca(NH_2)_2$ ball milling			
Calcium Amide Ca(NH ₂) ₂	Lithium Borohydride LiBH ₄	Product	
1 mole	1 mole	in progress	
1 mole	2 mole	in progress	
2 mole	1 mole	in progress	

LiBH ₄	ball milling	
Magnesium Amide Mg(NH ₂) ₂	Lithium Borohydride LiBH ₄	Product
1 mole	1 mole	in progress
1 mole	2 mole	in progress
2 mole	1 mole	in progress

$LiNH_2 + Mg(BH_4)_2$ ball milling				
Magnesium Borohydride Mg(BH ₄) ₂	Lithium Amide LiNH ₂	Product		
1 mole	1 mole	in progress		
1 mole	2 mole	in progress		
2 mole	1 mole	in progress		

2LiNH₂ + Ca(BH₄)₂ (Li_2Ca(BH_4)(NH_2)_2) Fritsch Milled

Ca(BH₄)₂:2LiNH₂ Temperature Programmed Desorption

- Ca(BH₄)₂ dehydrogenates rapidly at ~360°C.
- Ca(BH₄)₂:2LiNH₂ rapid dehydrogenation at ~250 °C completed at ~310 °C.
- Dehydriding temperature of the Ca(BH₄)₂:2LiNH₂ mixture is ~100 °C lower than that of Ca(BH₄)₂. Need to determine reversibility of this compositional ratio.

Summary

- A comprehensive plan has been developed to synthesize mixed metal borohydride/amide compounds of the formula $M^1M^2(BH_4)_x(NH_2)_y$.
- An amorphous phase was achieved by ball milling LiNH_2 and $\text{Ca}(\text{BH}_4)_2$ (2:1 mole ratio).
- The amorphous phase $Li_2Ca(BH_4)_1(NH_2)_2$ displayed a dehydriding temperature ~100°C lower than Ca(BH_4)_2.

Future Directions

- Identify structures and compositions of $Li_xCa(BH_4)_x(NH_2)_y$.
- Synthesize $Mg(NH_2)_2$ and $Ca(NH_2)_2$.
- Synthesize and characterize $\text{LiMg}(\text{BH}_4)_x(\text{NH}_2)_y$ and $\text{LiCa}(\text{BH}_4)_x(\text{NH}_2)_y$.
- Elucidate the origin of the reduction in dehydriding temperature.