

Standardized Testing Program for Solid-State Hydrogen Storage Technologies

Michael A. Miller Staff Scientist

Richard Page Institute Scientist

Southwest Research Institute[®] National Testing Laboratory for Solid-State Hydrogen Storage Technologies San Antonio, TX

DOE Annual Merit Review, Washington DC May 18-22, 2009

This presentation does not contain any proprietary or confidential information

Project STP_45_Miller

Overview

Timeline

<u>Ph</u>	ase I	 Standardization of Methods 				
*	Program Start: March 2002	*	 "Gold Standard" Measurements 			
*	Program End: September 2006	*	Verification of Material Performance			
**	100% Complete		(P) Understanding of Physisorption & Chemisorption Processes			
Phase II			(Q) Reproducibility of Performance			
**	Program Start: October 2006	*	Verification of System Performance			
**	Program End: September 2011		(K) System Life-Cycle Assessment			
**	50% Complete	*	Codes & Standards (F)			
	Developed					
	Budget		Partners / Collaborations			
<u>Pha</u>	Ise I	*	Ovonic Hydrogen Systems			
<u>Pha</u> ❖	ISE I DOE Share: \$2.475M	*	Ovonic Hydrogen Systems (Full-scale storage systems)			
<u>Pha</u> ❖	Budget Ise I DOE Share: \$2.475M SwRI Share: \$0.62M	*	Ovonic Hydrogen Systems (Full-scale storage systems) INER (Taiwan)			
Pha ↔ ↔ Pha	Budget Ise I DOE Share: \$2.475M SwRI Share: \$0.62M Ise II	* *	Ovonic Hydrogen Systems (Full-scale storage systems) INER (Taiwan) NESSHY (EC-JRC)			
<u>Pha</u> ↔ <u>Pha</u> ↔	Budget Ise I DOE Share: \$2.475M SwRI Share: \$0.62M Ise II DOE Share: \$2.0M	* * *	Ovonic Hydrogen Systems (Full-scale storage systems) INER (Taiwan) NESSHY (EC-JRC) U. Michigan			
<u>Pha</u>	Budget Ise I DOE Share: \$2.475M SwRI Share: \$0.62M Ise II DOE Share: \$2.0M Funding Received in FY08: \$375k	* * * *	Ovonic Hydrogen Systems (Full-scale storage systems) INER (Taiwan) NESSHY (EC-JRC) U. Michigan U. Texas at San Antonio			

Barriers

Objectives - Relevance

<u>Overall</u>

- Support DOE's Hydrogen Storage Program by operating an independent national-level laboratory aimed at assessing and validating the performance of novel and emerging solid-state hydrogen storage materials and full-scale systems
- Conduct measurements using established protocols to derive performance metrics: capacity, kinetics, thermodynamics, and cycle life
- Support parallel efforts underway within the international community, in Europe and Japan, to assess and validate the performance of related solid-state materials for hydrogen storage

Objectives - Relevance

<u>Current</u>

- Evaluate and validate the sorption capacity and kinetics of Mg-Li-B-N-H storage materials
- Evaluate the sorption capacity of Pd-doped polyaniline storage materials
- Further assess hydrogen spillover phenomena in metaldoped carbon foam (CF) storage materials
- Assess hydrogen spillover in metal-intercalated MOF (IRMOF-16) storage materials
- Continue Round-Robin testing in collaboration with the EU's hydrogen storage program (NESSHY)

Milestones

Approach – Internal/External Research

DOE Hydrogen Program

ACCOMPLISHMENTS IN RESPONSE TO DOE PRIORITIES & DIRECTIVES

Measurement of H₂ Sorption in Pd-Doped Polyaniline (PANI) Storage Materials (Provided by UNLV)

- Sample preconditioned at 130°C under high vacuum
- No uptake observed during first isotherm at room temperature
- After reconditioning sample at 110°C under high vacuum, second isotherm shows rapid uptake at low pressures (0.6 wt.% at 0.3 bar), reaching maximum uptake at saturation of 0.8 wt.% at 73 bar, which is fully reversible
- Third isotherm yielded same result after reconditioning under similar conditions
- In both cases, weight equilibrium (± 0.01 wt.%) was achieved within 30 min

Measurement of H₂ Sorption in Mg-Li-B-N-H Storage Materials (Provided by USF)

- Desorption/absorption hysteresis observed at 100°C (373 K), though material becomes fully reversible as temperature is increased
- PCTs do not exhibit a measurable plateau at any temperature
- Maximum reversible uptake occurs at highest temperature, 5.1 wt.% at 75 bar, which is inconsistent with classical metal hydrides
- Results indicate hydride phase formation (transition) in Li-Mg-B-N-H is kinetically limited, giving rise to observed trend

Note: A large change in heat capacity is suspected for this complex hydride, which would have an influence on the accuracy of results. Calorimetric measurements are needed to quantify this material's isobaric heat capacity through its phase transition(s).

Measurement of H₂ Sorption Kinetics in Mg-Li-B-N-H Storage Materials (Provided by USF)

- Desorption kinetics are faster than absorption, < 0.05 wt.% at 2 hours
- Absorption kinetics exhibit an initial steady-state condition within 4 hours, followed by slow uptake out to 21 hours

Isothermal Kinetics for Mg-Li-B-N-H at 473 K

Cycle-Life Chemical Stability of Mg-Li-B-N-H Storage Materials (Provided by USF) In Situ Mass Spectre

Target Volatile Species	Parent Ion Mass (m/z)	Principal Frag. Ion (Mass)	Occurrence				
BH_3^+	13.83	BH ₂ + (13)	Х				
$B_{2}H_{6}^{+}$	27.67	$B_2H_2^+$ (24) + BH ₃ ⁺	Х				
${\sf B}_{5}{\sf H}_{9}^{+}$	63.13	B ₅ H ₄ + (59)	Х				
NH ₃ +	17.03	100% (17):80% (16): 8% (15): 2% (14): 0.4% (18)	Not in Correct Ratio				
$B_3N_3H_6^+$	80.50	¹¹ B ₂ H ₆ ⁺ (28)	Not Correct Fragment Ions				
C ₆ H ₆ +	78.11	100% (78):19% (52):19% (51):16% (50):14% (77)	Detected				
Velatile energies containing horen or nitresses were							

Volatile species containing boron or nitrogen were not detected during desorption at 523 K, indicating chemical stability in the complex hydride In Situ Mass Spectrometry During Isothermal Desorption at 523 K

ACCOMPLISHMENTS RELATED TO EU (NESSHY) ACTIVITIES

Accomplishments – EU (NESSHY) Collaboration 🧹

DOE Hydrogen Program

Metal-Doped Carbon Foams for Hydrogen Storage via Spillover

Sodium Chloranilate Dihydrate

Hydrogen Uptake in Two Different CF Samples

Bourlinos, A. Steriotis, T.; Stubos, T.; Miller, M.A., Zlotea, C., Stubos, A., Steriotis, Th., **2008** (Patent Pending).

- Second batch of carbon foam (CF-3) provided by Demokritos for parallel studies of H₂ spillover
- Volumetric analyses show lower uptake above 10 bar than previously measured for CF-1, achieving only 2.1 wt.% at 88 bar for CF-3
- However, XRD pattern of CF-3 indicates higher relative intensity of free (unalloyed) Pd than in previous batch (CF-1)
- New batch of PdHg/CF has been synthesized to further study the effects of process variables (additional sorption studies are underway)

Subsequent studies based upon laser induced thermal desorption mass spectrometry (LTDMS) were aimed at examining the catalytic stability of PdHg/CF and resolving stable binding sites

Institute for Energy

EUROPEAN COMMISSION

National Center of Scientific Research "Demokritos"

Accomplishments – EU (NESSHY) Collaboration

Resolving Catalytic Stability and Binding Sites in PdHg/CF

LTDMS Desorption Profiles for PdHg/CF (CF-1) Following H₂ Dosing (550 Torr, 30 min)

LTDMS profiles show that a significant quantity of water is desorbed from PdHg/CF compared with hydrogen, likely due to spillover of atomic hydrogen and subsequent binding to oxygen-bearing carbons in CF. Broad range of stable binding sites is also shown.

National Center of Scientific Research "Demokritos"

Institute for

EUROPEAN COMMISSION

Energy

Accomplishments – EU (NESSHY) Collaboration *<*

DOE Hydrogen Program

Resolving Catalytic Stability and Binding Sites in PdHg/CF (Cont.)

- Neither D2 nor HD species desorb at detectable levels following deuterium dosing of PdHg/CF
- HDO is desorbed at same temperature as water
- Similar isotopic measurements underway for new batch of PdHg/CF

These results show that D_2 is dissociated by PdHg catalyst and is spilled over onto the CF receptor. Atomic deuterium combines with oxygen-bearing carbons (e.g., -OH), which then desorb as HDO

National Center of Scientific Research "Demokritos"

ACCOMPLISHMENTS RELATED TO SWRI[®]'S INTERNAL & EXTERNAL RESEARCH COLLABORATIONS

Application of Theory to the Selection of Alternative Catalyst for H₂ Spillover

Goals:

- Select alternative catalysts for intercalating metal organic frameworks (MOFs) and effecting hydrogen uptake via spillover with enhanced kinetics
- Compute density of states using FP-LMTO theory of candidate pure metals and metal compounds
- Choose complementary systems:
 - > Pure metal \Rightarrow conducive to H₂ dissociation
 - > Complementary metal compound exhibiting band gap in the density of states (DOS) \Rightarrow not conducive to H₂ dissociation
- Synthesize metal-intercalated MOFs
- Measure hydrogen uptake in each complement

Full-Potential, Linear-Muffin-Tin-Orbital Theory (FP-LMTO)

Synthesis of Metal-Intercalated MOFs for Hydrogen Storage via Spillover

Synthesis of Metal-Intercalated MOFs for Hydrogen Storage via Spillover

<u>Step 2 – In-Situ Intercalation of Metal Particles into Framework</u>

Characterization of Ti-Intercalated IRMOF-16

DOE Annual Merit Review Meeting, Washington DC, May 18 - 22, 2009

Hydrogen Uptake in Ti- and TiB₂ Intercalated IRMOF-16

- Enhanced hydrogen uptake at room temperature via spillover is observed without precious-metal catalyst (Ti-IRMOF-16), 1.3 wt.% at 80 bar
- No measurable uptake observed for TiB₂-IRMOF-16 due to band-gap in DOS
- Fast spillover kinetics compared with other materials studied (~ 14 min vs. 600 min for Pt/AC/BC/IRMOF-8)

Future Work (FY08)

9	in the second		National Testing Laboratory for Solid-State Hydrogen Storage Technologies						
/F	Sample Analysis Backlog (Revised 01/29/2009)								
`	K do	<u> </u>							
Sout	thwest Res	search Institute				Completed Underway	nr = not received na = not applicable		
							LTDMS = Laser Thermal Desorption Mass Spectrometry		
	Sample No.	Organization / Collaborator	Sample Type	Analysis	Date Received	Scheduled Start Date	Estimated Completion Date	Priority	Comments
	1	SwRI	TiB2- Intercalated IRMOF-16 Spillover	Grav. sorption isotherms, 284, 298, 310, 314 K, kinetics	na	3/2/2009	3/27/2009	Med	Internal Research
	2	Demokritos (NESSHY)	PdHg/CF Spillover	Vol. sorption isotherms, kinetics; LTDMS, binding energies	2/2/2009	3/20/2009	4/24/2009	High	Independent collaboration
	3	SwRI	AuAl2- Intercalated IRMOF-16 Spillover	Grav. sorption isotherms, 284, 298, 310, 314 K, kinetics	na	3/31/2009	4/10/2009	Med	Internal Research
	4	WSU/GoNano Tech.	Si-Nanosprings	Grav. sorption isotherms, 200-298 K, kinetics; LTDMS, binding energies	2/26/2008	4/13/2009	4/24/2009	Med	Independent collaboration
	5	NESSHY	MgH2 + Transition Element	Vol. sorption isotherms, 553 & 593 K, kinetics, dissociation enthalpy	3/26/2008	4/27/2009	5/22/2009	Med	Round-Robin Testing with EU
	6	SwRI	LaNi5 Platelet Technology	Vol. sorption isotherms, 298 - 398 K, kinetics, dissociation enthalpy	na	5/25/2009	6/5/2009	Med	Internal Research
	7	SwRI	CNT Platelet Technology	Grav. sorption isotherm, 298 K, LTDMS	na	4/27/2009	5/8/2009	Med	Internal Research

Summary

- Pd-doped polyaniline (PANI) provided by UNLV exhibited reversible hydrogen uptake of 0.8 wt.% at 73 bar at room temperature with fast kinetics.
- Mg-Li-B-N-H complex hydride provided by USF was shown to exhibit reversible uptake at temperatures above 150°C with uptake being proportional to temperature. A maximum uptake of 5.1 wt.% was observed at 250°C and 75 bar without evidence of any chemical instability. Hydride phase formation in Li-Mg-B-N-H is thought to be kinetically limited.
- In collaboration with Demokritos (NESSHY), resumed efforts to further explore hydrogen spillover in PdHg-doped carbon foams and discern process variables in the synthesis of these materials. A second batch of material exhibited lower uptake above 10 bar than previously measured (2.1 vs. 8.0 wt.% at 80 bar), which may be attributed to higher segregation of PdHg catalyst as compared with first batch. Isotopic LTDMS measurements, however, also indicate that spilt over hydrogen binds to oxygen-bearing carbons in CF to evolve water upon desorption. Future experiments are aimed at further assessing this mechanism.
- Under SwRI[®]'s internal research activities, Ti- and TiB₂ intercalated IRMOF-16 were successfully synthesized in an effort to overcome the diffusion-limited kinetics associated with spillover effects, and to explore alternative nano-scale catalysts. Ti-IRMOF-16 demonstrated hydrogen uptake at room temperature (1.8 wt.% at 80 bar), achieving steady-state conditions within 14 min.