Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage

- C. Wolverton (PI), H. Kung
 - Northwestern University
 - V. Ozolins UCLA

- TERN STATISTICS AND ADDRESS AN
- NORTHWESTERN UNIVERSITY
- UCLA

A. Sudik, D. Siegel Ford Motor Company

stp_47_wolverton

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 9/1/08 (Funding started Feb. 09)
- Project End Date: 8/31/13
- 2% complete (one month of funding)

Budget

- Total Budget: \$2714K
 - DOE Share: \$2160K
 - Contractors Share: \$554K
- Funding for FY08: \$75K
- Funding for FY09 \$450K

Barriers

- Barriers addressed
 - P. Lack of Understanding of Hydrogen Physisorption and Chemisorption
 - A. System Weight and Volume
 - E. Charging/Discharging Rates

Partners

- Northwestern University
- UCLA
- Ford Motor Company
- Project lead: Northwestern University

Relevance - Project Objectives

- 3 Materials Classes (chemical, metal/complex, physisorptive) divided into DOE Centers of Excellence
- Our project: <u>Combine</u> materials from <u>distinct</u> <u>categories</u> to form novel multicomponent reactions
- Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH₂+NH₃BH₃] and nitrogen-hydrogen based borohydrides [e.g. Al(BH₄)₃(NH₃)₃].
- These types of combinations have only recently begun to be explored – initial results look very promising!
- PIs have extensive experience in H₂ storage research, from materials and automotive perspectives

Relevance: Motivation for Novel Combinations-I

High-capacity hydrogen storage in lithium and sodium amidoboranes

ZHITAO XIONG¹, CHAW KEONG YONG¹, GUOTAO WU¹, PING CHEN^{1,2}*, WENDY SHAW³, ABHI KARKAMKAR³, THOMAS AUTREY³, MARTIN OWEN JONES⁴, SIMON R. JOHNSON⁴, PETER P. EDWARDS⁴ AND WILLIAM I. F. DAVID⁵

¹Department of Physics, National University of Singapore, Singapore 117542, Singapore ²Department of Chemistry, National University of Singapore, Singapore 117542, Singapore ³Pacific Northwest National Laboratories, Richland, Washington 99352, USA ⁴Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford 0X1 30R, UK ⁵ISIS Facility, Rutherford Appleton Laboratory, Chilton 0X11 0QX, UK ^{*}e-mail: phychenp@nus.edu.sg

- <u>Combinations of NH_3BH_3 (a chemical hydride) with LiH or NaH (metal</u> <u>hydrides</u>) \rightarrow novel alkali metal amidoborides, LiNH₂BH₃ and NaNH₂BH₃, which release a large amount of hydrogen at 90°C, ~10.9 and 7.5 wt.%.
- Similar results found at Ford for combinations of NH₃BH₃ with other metal/complex hydrides
- Very promising results open a wealth of possibilities involving combinations of NH₃BH₃ with other metal hydrides and complex hydrides.
- The number of such combinations is enormous, and hence a systematic method of screening for promising reactions is required.

Relevance: Motivation for Novel Combinations- II

- Nitrogen-hydrogen based borohydrides (e.g., ammoniated metal borohydrides) researched extensively twenty years ago [Konoplev 1985, Kravchenko 1990], but have not received much attention as hydrogen storage materials. Recent GE [Zhao 2007] work has shown Mg(BH₄)₂·(NH₃)₂ has enhanced properties. Discovery by GM/Oxford/Toyota groups of Li₄(BH₃)(NH₂)₃ another successful example in this area.
- Ammoniated metal borohydrides are actually quite common: Li, Na, Al, Mg, Ca, Be, Zn, Sc, Y La, Zr, Cr, and Co [Kravchenko 1990]. Most of these remain largely unexplored for hydrogen storage applications.
- NH₃ is a well known poison for PEM fuel cells (but not H2ICE), so we will carefully monitor for both H₂ and NH₃ release.

Relevance: Motivation for Novel Combinations- III

 Recent collaborative work by PI's has demonstrated enhanced properties from <u>combinations of materials</u>

Yang, Sudik, Siegel, Wolverton, Ozolins et al., Angew. Chem. Int. Ed., 47, 882 (2008).

Approach

Our approach involves a powerful blend of:

1) H2 Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective

Hydrogen Storage Measurements and Auto Perspective (Sudik and Siegel, Ford) Computational Prediction of Novel Reactions (Wolverton, Ozolins, Siegel)

Kinetics/Catalysis Experiments (Kung, NU)

NORTHWESTERN UNIVERSITY UCLA

Approach: Project Organization

Organization	Roles and Responsibilities				
Northwestern University	Overall project and technical management (Wolverton)				
(Wolverton and Kung)	• Lead effort in first-principles calculations of NH ₃ BH ₃ mixtures (Wolverton)				
	 Lead effort in identifying new storage reactions (Wolverton) 				
	• Lead effort in experimental studies of new catalysts and catalytic activity (Kung)				
	 Experimental characterization of hydrogen storage materials (Kung) 				
Ford (Siegel and Sudik)	Collaborate in computational studies (Siegel)				
	Consult on material selection and testing (Sudik and Siegel)				
	• Lead effort in material synthesis and measurements of H ₂ storage properties (Sudik)				
UCLA (Ozolins)	 Lead effort on first-principles calculations of ammoniated borohydrides 				
	 Lead first-principles studies of reaction kinetics and design of catalysts 				

Approach: Milestones/Go No-Go Decision Point

- By the end of the 3rd year, complete DFT thermodynamics calculations [Wolverton, Ozolins, Siegel] Milestone
- By the end of the 3rd year, complete experimental studies of desorption temperature, capacity and purity on remaining compositions. [Sudik] **Milestone**
- Go/No-go decision (end of Year 3): Identify a mixed materials system that experimentally desorbs 8.5 wt% H2 and has measured or predicted first-principles thermodynamics enabling operation in a reversible storage window between -40 and 80C and 1 and 700 bar. [All]

Approach: Experimental Capabilities

Ford's hydrogen storage research laboratory is designed for handling, synthesizing, & processing diverse materials, including those which require air/water-free conditions

Synthesis, Handling, & Processing Equipment:

- MBraun Labmaster 130 gloveboxes
- Controlled energy-temperature mixer mills
 - Spex 8000, Spex Freezer, Fritsch P7, Retsch MM301
- High- and low-pressure manifolds
 - High: vacuum to 200 bar (Ar, N_2 , NH_3 , H_2)
 - Low: vacuum to 1 bar N₂ (Schlenk line)
- Tube and muffle furnaces
- Arc-melting furnace (>3000°C) (Thermal Tech. LLC)

MBraun Labmaster Glovebox

Spex High-Energy Ball Mill

Approach: Experimental Capabilities

Extensive characterization and property evaluation instruments available on-site for identification of reaction phases and determination of principal hydrogen storage properties

Phase Characterization Apparatus:

- In situ variable temperature & static PXRDs (SCINTAG XDS2 and X1)
- In situ variable temperature & static IR spectrometers (Mattson Inst.)

Property Evaluation Instruments:

- TPD-MS built in-house (МКS PPT MS)
- Setaram high-pressure DSC (max. 900°C; 400 bar H₂)
- Setaram PCT Pro-2000 apparatus (max. 400°C; 200 bar H₂)
- Several volumetric water displacement burettes

Setaram PCT Apparatus

Setaram High Pressure DSC

Approach: Experimental Capabilities

Facility to handle airsensitive materials at Northwestern

•Glove boxes

Schlenk lines

Pressure reactors

Approach: Computational Resources

Wolverton and Ozolins (DOE INCITE Program): 1,000,000 CPU Hour Award on Argonne Blue Gene

Wolverton Group (NU) 3 Opteron/Infiniband Clusters > 700 total cores

Argonne's Supercomputer Named World's Fastest for Open Science, Third Overall

The U.S. Department of Energy's (DOE) Argonne National Laboratory's IBM Blue Gene/P high-performance computing system is now the fastest supercomputer in the world for open science, according to the semiannual Top500 List of the world's fastest computers.

The Top500 List was announced during the June International Supercomputing Conference in Dresden, Germany.

ad More >>

Ozolins Group (UCLA) 1 Opteron/Infiniband cluster 1 Xeon/Infiniband cluster ~ 350 total cores

Yang, Sudik, Siegel, Wolverton, Ozolins et al., Angew. Chem. Int. Ed., 47, 882 (2008).

Temperature (°C)										
25		125	225	325		425	525			
Intensity (a.u.)	(m/e = 2)			Ň	Yang, Sudik, S Angew. Ch	iegel, Wolverton em. Int. Ed., 47,	, Ozolins (882 (2008	et al., 8).		
Step	Reaction				Conversion	Obs. (Theo.) H ₂ Release (wt.%)	∆H _{calc} (kJ/mol)	E _a (kJ/mol)		
Adilling		$3 \text{ LiNH}_2 + \text{LiBH}_4 \Longrightarrow \text{Li}_4\text{BN}_3\text{H}_{10}$				-	-12	-		
Mitting	2 Li ₄ BN ₃ H	$2 \text{ Li}_4\text{BN}_3\text{H}_{10} + 3 \text{ MgH}_2 \Rightarrow 3 \text{ Mg(NH}_2)_2 + 2 \text{ LiBH}_4 + 6 \text{ LiH}$				-	-207	-		
Heating < 110°	2 Li₄BN₃H	$2 \text{ Li}_4\text{BN}_3\text{H}_{10} + 3 \text{ MgH}_2 \Rightarrow 3 \text{ Mg(NH}_2)_2 + 2 \text{ LiBH}_4 + 6 \text{ LiH}$				-	-207			
1 st Pea	k 2 Li₄BN₃H	2 $\text{Li}_4\text{BN}_3\text{H}_{10}$ + 3 $\text{MgH}_2 \Rightarrow$ 3 $\text{Li}_2\text{Mg(NH)}_2$ + 2 LiBH_4 + 6 H_2				4 () (4 3)	80	119		
Shoulde	er Mş	$Mg(NH_2)_2 + 2 LiH \iff Li_2Mg(NH)_2 + 2 H_2$				1.0 (1.3)	96	-		
2 nd Pea	k 3 Li ₂ Mg(N H ₂	$ \begin{array}{c} 3 \text{ Li}_2\text{Mg(NH)}_2 + 2 \text{ LiBH}_4 \Longrightarrow 2 \text{ Li}_3\text{BN}_2 + \text{Mg}_3\text{N}_2 + 2 \text{ LiH} + 6 \\ \text{H}_2 \end{array} $				4.2 (4.3)	-13	184		
Heating > 400° C	$\frac{1}{2}$ Li ₃ BN ₂ + $\frac{1}{2}$	2 Li ₃ BN ₂ + Mg ₃ N ₂ + LiBH ₄ \Rightarrow 3 LiMgBN ₂ (Phase X) + 4 LiH				-	-173	-		
	C LiMg	LiMgBN ₂ (Phase X) \Rightarrow LiMgBN ₂ (Tetragonal)				-	-	-		
3 rd Pea	$2 \text{ LiH} \Rightarrow 2 \text{ Li} + \text{H}_2$				1	2.1 (2.1)	84	-		

Demands on H2 Storage Systems

- Multiple stringent criteria:
 - High gravimetric density
 - High volumetric density
 - Target equilibrium pressures & temperatures
 - recharge/release between 1 and 700 bar and -40 to +80 °C
 - High rates of hydrogen release and absorption

Composition & Structure

Reactions & Thermodynamics

Kinetics

Computational Capabilities Part I: Structure Prediction

How can we predict crystal structures of new materials?

- Database searching
 - Alanates, Borohydrides
- Enumeration
 - Li₂NH, MgNH, Li₄Mg(NH)₃, ...
- Genetic algorithms
 - MgNH
- Prototype Electrostatic Ground States (PEGS)
 - Alanates, Borohydrides, X_nB₁₂H₁₂, ...

Computational Capabilities Part II: Grand Canonical Linear Programming In the presence of H₂ gas, the total free energy is:

$$G(T) = \sum_{i} x_{i} G_{i}(T) - \frac{\mu_{H_{2}}(p,T)}{2} \sum_{i} x_{i} n_{H}^{i} = \min$$

 $\begin{cases} x_i & \text{mole fraction of phase "i" (unknown)} \\ n_s^i & \text{number of atoms of type "s" per f.u. of phase "i"} \\ G_i & \text{Gibbs energy of phase "i" (from first-principles)} \\ \mu_{H_2} & \text{chemical potential of H}_2, \quad \mu_{H_2} = \mu_0 + RT \log(p/p_0) \end{cases}$

G(T) is minimized keeping non-H compositions fixed:

$$f_s = \sum x_i n_s^i = \text{const for } s \neq H.$$

Linear programming yields phase fractions $x_i(p, T)$.

A. Akbarzadeh, V. Ozolins, and C. Wolverton, Advanced Materials 19, 3233-3239 (2007)

Computational Capabilities Part III: Kinetics

Elucidate rate-limiting steps for hydrogen release:

- Diffusion
 - NaAlH₄, Na₃AlH₆, LiNH₂, H in Al
- Surface & interface kinetics
 - NaAlH₄
- Kinetics in liquids
 - Li₄BN₃H₁₀

Technical tools:

- Large-scale ab initio MD
- Transition state calculations (NEB, etc.)

Collaborators

Pl's/co-Pl's

Chris Wolverton (Northwestern, lead) Harold Kung (Northwestern) Vidvuds Ozolins (UCLA, subcontract) Andrea Sudik (Ford, no-cost collaborator) Don Siegel (Ford, no-cost collaborator)

Outside Collaborators:

E. Majzoub (UMSL) J. Yang (Ford) G. Ceder, N. Marzari (MIT) C. Brown (NIST)

Illii

Summary

- New project focused on design of novel multi-component mixtures for hydrogen storage
- Focus on mixtures of materials from two distinct classes (e.g., reversible + irreversible)
- Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH₂+NH₃BH₃] and nitrogenhydrogen based borohydrides [e.g. Al(BH₄)₃(NH₃)₃]
- Powerful blend of: 1) H₂ Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective