Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials

J. Gray, C. James, D. Tamburello, K. Brinkman, B. Hardy and D. Anton

Savannah River National Laboratory

May 20, 2009

Project ID #: STP_49_Anton

This presentation does not contain proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: 10/1/05
- End: 9/30/10
- Percent complete: 66%

Budget

- Funding received in FY08
 - \$500K
- Planned Funding for FY09
 - \$400K

Barriers Addressed

- F. Codes and Standards
- P. Understanding of Hydrogen Physisorption & Chemisorption
- **Q. Reproducibility of Performance**

Partners

- **M. Fichtner,** Forschungszentrum Karlsruhe, Germany
- **N. Kuriyama,** National Institute for Advanced Industrial Science and Technology, Japan
- **R. Chahine,** Université du Québec à Trois-Rivières, Canada
- **D. Mosher, United Tech. Res. Ctr., USA**
- **D. Dedrick,** Sandia NL, USA

The objectives of this study are to understand the safety issues regarding solid state hydrogen storage systems through:

- Development & implementation of internationally recognized standard testing techniques to quantitatively evaluate both materials and systems.
- Determine the fundamental thermodynamics & chemical kinetics of environmental reactivity of hydrides.
- Build a predictive capability to determine probable outcomes of hypothetical accident events.
- Develop amelioration methods and systems to mitigate the risks of using these systems to acceptable levels.

Task Plan

Materials Test Plan

- All three major classes of condensed hydrogen storage materials are being studied:
 - 1. metal hydrides
 - 2. chemical hydrides
 - 3. adsorbents
- The priority of materials to be analyzed is being conducted in consultation with the three Materials CoE's and DoE.
- Tested:
 - $2\text{LiBH}_4 \cdot \text{MgH}_2$
 - NH₃BH₃
- Investigating:
 - activated carbon, AX-21
 - AlH₃

Material Standardized Testing (DE-FC36-02AL67610)

DOT/UN Doc., *Recommendations on the Transport* of Dangerous Goods, Manual of Tests and Criteria, 3rd Revised Ed., ISBN 92-1-139068-0, (1999).

• Flammability

Flammability Test Spontaneous Ignition Burn Rate

Water Contact

Immersion Surface Exposure Water Drop Water Injection

NH₃BH₃ Self-Heating Results

- Fill 25x25x25 mm sample holder with material
- Sample holder pre-fitted with micro thermocouples
- Heat sample to 150°C
- Observe temperature within sample spatially resolved to determine if self-heating occurs

- Sample begins to self-heat after about 11 minutes
 - Time at set-point = 5 min
- Temperature spiked as material combusted
 - Green flames observed from oven door
- Maximum Temperature observed = 439°C

NH₃BH₃ Self-Heating & Burn Rate

• NH₃BH₃ expanded through mesh Inspection of interior sample container reveals no damage after debris is removed

•Burn rate = 33.3 mm/sec

•37% slower than the burn rate measured for

- NaAlH₄ (51 mm/sec)
- $2\text{LiBH}_4 \cdot \text{MgH}_2(52 \text{ mm/sec})$

UN Test Summary

Material / UN Test	State	Pyrophoricity	Self-Heat	Burn Rate	Water Drop	Surface Contact	Water Immersion
2LiBH₄∙MgH₂ SRNL	С	No ignition event. Hygroscopic material absorbed H_2O from air.	Self-heated ~300 °C within 5 min at as $T_{oven} = 150$ ° is approached.	Flame propagated in 5 sec with burn rate of 52 mm/sec.	2 H ₂ O drops required for near-instant ignition.	Material ignited	No ignition event recorded. Gas evolved at longer times. (5 min)
	D	Not tested	Not tested	Not tested	1 H ₂ O drop required for near-instant ignition	Reaction observed with no flame	Reaction observed with no flame
NH3BH3 SRNL	С	No ignition event. Hygroscopic material absorbed H_2O from air.	Self-heated ~300 °C within 10 min, 5 min at T _{over} =150 °C	Flame propagated in 6 sec with burn rate of 33 mm/sec	No reactivity detected	No ignition event recorded. Gas evolved at longer times. (5 min)	No reactivity detected
	D	Not tested	Not tested	Not tested	No reaction	No reaction	No reaction
3Mg(NH ₂) ₂ ·8LiH AIST	С	Ignition event recorded in room temp experiment	Material failed pyrophoricity test	Flame Propagates at 463 mm/sec	Not tested	Material ignited	Not tested
	D	Ignition event recorded in room temp experiment	Material failed pyrophoricity test	Not tested	Not tested	Not tested	Material ignited

Thermo-Chemical Analysis of Water Contact

SRNL

NH₃BH₃ Water Vapor Calorimetry

Experiment

• Argon gas flow with 30% RH at 40°C

Result

• Small exothermic reaction probably due to water absorption

0.6 $\Delta H=-5 \text{ kJ/mol}$ 0.5 0.4 Heat Flow (mW) 0.3 0.2 0.1 0 -0.1 10500 15500 20500 500 5500 25500 30500 Time (s)

XRD of crystalline products revealed water vapor does not alter the NH₃BH₃

NH₃BH₃ Water Calorimetry

Liquid Phase Calorimetry

Expect:

 $NH_3BH_3 + 2H_2O \rightarrow BO_2^{-}(a) + NH_4^{+}(a) + 3H_2(g)$

ΔH=- 222 kJ/mol exotherm at 40°C

Result:

 $NH_{3}BH_{3} + H_{2}O = NH_{3}BH_{3}$ (a)

(dissolved, but solvated or ionic?)

 $\Delta H=17 kJ/mol$ endothermic at 40°C

XRD analysis of crystalline products revealed only starting NH_3BH_3 material present after drying dissolved $NH_3BH_3 + H_2O$ solution

8LiH+3Mg(NH₂)₂ Calorimetry

 $8LiH+3Mg(NH_2)_2 \rightarrow Mg_3N_2+4Li_2NH+8H_2$ 7wt% H₂ 140<T<200°C Nakagawa et. al., 2007

 $8LiH+3Mg(NH_2)_2$ Material received from N. Kuriyama, AIST Liquid water hydrolysis calorimetry at 40°C

20 Liquid Water 40oC 18 Normalized Heat Flow (mW/mg) 16 14 12 10 8 6 2 0 -1000 9000 19000 29000 39000 Time (s)

•Bulk of heat released within 15 min. •XRD analysis of crystalline products revealed Mg(OH)₂ and Li₂CO₃ from atmospheric CO₂

8LiH:3Mg(NH₂)₂

Gas Phase Calorimetry

Air ∆H=171 kJ/mol

Argon ∆H=165 kJ/mol

Enthalpy of reaction similar and final products the same with humid Ar or Air; Hydrolysis in the presence of air proceeded quicker.

XRD analysis of crystalline products same in Ar and Air humid atmosphere at 40°C: Mg(OH)₂ and LiOH*H₂O

AIST

Modeling Overview

- A very large number of experiments would be required to investigate all hypothetical accident scenarios and subtle variations
 - Accident scenarios are complex & have many potential variations
- Use simplified models (numerical or correlation based) that bracket potentially hazardous scenarios
 - Can also be used to suggest / verify concepts for mitigation
- Parameters & mechanisms governing metal hydride combustion are not well known
 - Need to determine physical mechanisms controlling media-environment interactions
 - Need experiments to identify important physical mechanisms that must be incorporated into models

• Objectives

- Identify those scenarios most likely to result in hydride ignition
- Obtain an initial idea of mechanisms that precede onset of hydride ignition
- Identify the magnitude of mitigation required to minimize ignition probability

Accident Scenario

SRNL

Spilled Media

Governing Equations

Mass Balance (Gasses) $\frac{\partial c_i}{\partial t} + \nabla \cdot (c_i \overrightarrow{v_i}) = S_i$

Fluid Motion $\frac{\partial}{\partial t}(\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot \left(\vec{\tau}\right) + p\vec{g} + \vec{F}$ $= \frac{\pi}{\tau} = \mu \left[\left(\nabla \vec{v} + \nabla \vec{v}^{\mathrm{T}}\right) - \frac{2}{3} \nabla \cdot \vec{v}I \right]$

Relation Between Pressure Gradient and Mass Averaged Gas Velocity (Blake-Kozeny Equation)

 $\vec{\mathbf{v}} = -\frac{{\mathbf{D}_{p}}^{2}}{150\mu} \left(\frac{\varepsilon}{1-\varepsilon}\right)^{2} \nabla \mathbf{P}$

Energy Balance $(1-\varepsilon)\left[\rho C_{p}\right]_{Solid}\frac{\partial T}{\partial t} - \nabla \cdot k\nabla T = -\varepsilon\left[\rho C_{p}\right]_{gas}\left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T\right) + \frac{1}{T_{ref}}\left(\frac{\partial P}{\partial t} + \vec{\varepsilon v} \cdot \nabla P\right) + Source$

Diffusion Equations (Stefan-Maxwell) - Could Use Fick's as Well

Total Number of Unknowns and Equations are Equal

Rate Equations $\frac{1}{V} \frac{\partial n_i}{\partial t} \Big|_{\text{Reaction}} = f_i(\underline{c}_{\text{gas}}, \underline{c}_{\text{Hyd}}, T, P) \quad \text{Gasses}$ $\frac{1}{V} \frac{\partial n_{\text{Hyd } j}}{\partial t} \Big|_{\text{Reaction}} = f_j(\underline{c}_{\text{gas}}, \underline{c}_{\text{Hyd}}, T, P) \quad \text{Solids}$

Total Gas Concentration $c = \sum_{l=1}^{n} c_{l}$

Gas Pressure

P = cRT

Ideal Gas Eqn of State

Relation Between Gas Concentration and Mass Density

$$\rho = \sum_{i=1}^{n} M_{i} c_{i}$$

Relation Between Mass Averaged Velocity and Species Velocities $\vec{v} = \sum_{i=1}^{n} \frac{M_i c_i \vec{v}_i}{\rho}$

> Closed System

17

Modeling Approach

- Phase I Proof of Concept
 - Generic material (estimate properties)
 - Multiple species
 - Assumed heat and mass generation (no chemical reactions)
 - Multiple software platforms
- Phase II Partial Chemical Reactions
 - Approximate chemical reactions within the media
 - Specific materials
 - Calorimetry data
 - Experimental properties
- Phase III Full Models
 - Accident scenarios
 - More complete chemical reactions
 - Multiple-stage reactions

Dynamic boundary conditions

Phase Introduced	Parameter Name	Symbol	
I	Bed porosity	3	
I	Mean particle diameter	D _p	
I	Solid phase specific heat	C _{p Solid}	
I	Bed thermal conductivity	k	
I	Particle mass density of bed	ρ_{Solid}	
I	Heats of reaction	ΔH_{Rxn}	
п	Gas component kinetics	$\frac{\partial n_i}{\partial t}\Big _{Reaction}$	
П	Solid component kinetics	$\frac{\partial n_{Hydj}}{\partial t}\Big _{Reaction}$	
III	Bed tortuosity factor	τ	
III	Wetted interface velocity	V _{wet}	

Phase I Model (Assumed Heat & Mass Generation Rates)

Grid Information:

- 26,700 elements; 26,400 nodes
- Fixed sizing function: 0.25mm to 2.5mm with a growth rate of 1.02

FLUENT model:

- 2-D axisymmetric
- Double-precision
- Pressure-based, 2nd-order implicit, unsteady formulation
- Laminar Viscosity
- Heat transfer and Species models enabled

Material Properties – porous NaAlH₄:

- Porosity (ε) = 0.5
- Particle Diameter $(D_p) = 3.7 \times 10^{-6} \text{ m}$
- Density (ρ) = 720 kg/m³
- Thermal conductivity (k) = 0.325 W/m-K
- Specific heat $(C_p) = 820 \text{ J/kg-K}$
- Heat Generation \leq 40,000 J/mol (overall heat of reaction for NaAlH₄ from NaH)
- Mass Generation $\leq 0.5 \text{ kg H}_2/\text{m}^3$ -s (loading based on DOE 2010 Technical Target)

Initial conditions:

- Dry air @ 1 atm & 298 K
 - Dry air mass fraction is $80\% N_2$, $20\% O_2$

Phase I Model Accident Scenarios

Scenario	Description	Generation
1. Bottom only	Material on wet surface in dry air	Sources B and C : Heat Generation = 40,000 J/mol Mass Generation = $0.5 \text{ kg H}_2/\text{m}^3$ -s
2. Top only	Material on a dry surface with the pile exposed to 30% RH air	Sources A and C: Heat Generation = 12,000 J/mol Mass Generation = 0.15 kg H_2/m^3 -s
3. Dual with reduced source	Material on a wet surface with the pile exposed to 30% RH air	Source A: Heat Generation = 12,000 J/mol Mass Generation = 0.15 kg H ₂ /m ³ -s Sources B and C: Heat Generation = 40,000 J/mol Mass Generation = 0.5 kg H2/m ³ -s
4. Dual with full source	Material on a wet surface in the rain	Sources A, B, and C: Heat Generation = 40,000 J/mol Mass Generation = 0.5 kg H_2/m^3 -s

Note: Heat and mass generation sources remain **constant** throughout the simulations.

Phase I Model Results: H₂ Generation

Flow time = 1.0 seconds

Phase I Model Results: H₂ Generation

inches

Flow time = **120** seconds

Phase I Model Results: Temperature

inches

Flow time = **1.0** seconds

Phase I Model Results: Temperature

inches

Flow time = **120** seconds

Modeling Development

- Phase I Proof of Concept
 - Alter material property estimates
 - Alter heat and mass generation rates
 - Multiple software platforms
- Phase II Partial Chemical Reactions
 - Approximate chemical reactions within the media
 - Specific materials
 - Calorimetry data
 - Experimental properties
- Phase III Full Models
 - Accident scenarios
 - More complete chemical reactions
 - Multiple-stage reactions
 - Dynamic boundary conditions

- Explore additional software platforms
- Add chemical reaction approximations to the media (based on calorimetry data)
- Alter the model to account for the rate of reaction, changes in generation rate, etc.
- Update material properties (based on experimental data)
- Add water vapor and other species to the model calculation
- Account for permeation and changes in generation location within the media

Risk Mitigation Strategies

- Passive neutralization methods are of primary interest
 - Activate when hydride release occurs
- Preliminary system mitigation strategies have been identified
- Tests are being outlined to determine efficacy of strategies
- Invention disclosure on passive neutralization of hydrides has been filed with SRNL

Summary

- Standardized UN tests hazards analysis tests completed on 2LiBH₄·MgH₂ and NH₃BH₃ in the fully charged state
- Water contact completed in charged and discharged states
- Calorimetric characterization of NH₃BH₃ completed
- Mitigation strategy invention disclosure filed
- Modeling effort initiated to develop predictive capabilities for environmental exposure and reactivity scenarios

Proposed Future Work

- Conduct standardized testing of activated carbon and AlH₃ as decided in consultation with the Centers of Excellence
- Continue the thermodynamic and kinetic testing with AlH₃ and LiH:Mg(NH₂)₂ to feed information into the numerical simulations
- Continue modeling effort to Phases II and III to render predictive capabilities
- Evaluate mitigation strategies utilizing calorimetry and modified U.N. Tests

