

Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

John E. Fischer ^{1,3,} Yury Gogotsi ² and Taner Yildirim ^{3,1}

¹ Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104

²Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104 ³National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Volumetric capacity

✓ 70 % of the DOE target (45 g H₂/L)

305

Students and Post-docs

Jonathan P. Singer Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104

Dr. Sun-Hwa Yeon, Dr. Sebastian Osswald

²Department of Materials Science and Engineering, Drexel University Philadelphia, PA 19104

Jason M. Simmons

National Institute of Standards and Technology, Gaithersburg, MD 20899

05/20/2009

STP_52_Gogotsi This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID:

Chemical activation in KOH (collaboration with Alicante, Spain) • Maximum CH4 capacity : 15.5 wt% 35 bar and 16.8 wt% 60 bar. · CH4 uptake increase by 30-40% compared to H2-annealed CDCs. 6 125 Water of the sources 12 TIC SEE 'C CL.' 10.000 + 600 'C H. anni. THE SER 'C C + 600 °C H. sent +KOR at 30 40 50 30 40 50 60 Pressure / has essure / bar ✓ Excess CH, uptake was measured at 25 °C.

Excess CH4 capacity of post activated CDC

Objectives and Milestones

- Determine the optimal pore size for high pressure, low temperature hydrogen storage.
- Increase volumetric uptake by using bulk samples (eliminate macropores).
- Demonstrate that the methane storage is possible at room temperature using a similar material system.

Performance Measure	Units	Experimental Condition	2009 Performance Target	2010 Performance Target
Volumetric H ₂ and CH ₄	g _{H2} / L	60 bar, 77 K	35	45
storage capacity	V(STP) _{CH4} / V	35 bar, 273 K	146	180

Excess volumetric H₂ capacity

500 600 700 800 900 1000 1100 1200 1300

Chloringtion Immoerature / 1

Methane excess adsorption isotherm

✓ TiC CDC synthesized at 800 °C Cl₂ was annealed by NH₃ at 600 °C.

✓ The heat of adsorption decreases with increasing gas sorption.

✓ The strongest binding energy : ~ 24 kJ/mol

+

Pressure / bas

DOE Target

AmountAdsorbed / wt%

✓ Maximum volumetric uptake : ~ 35 g/L at 900 °C Cl₂ of bulk TiC

Etching of fully dense ceramic plate

DOE Hydrogen

Program Review

May 20, 2009

S.-H. Yeon, et al, J. Power Sources, (2009)

Summary

- Purified CDC's subjected to chemical or physical activation can match or exceed, gravimetric sorption capacity of activated carbons. The key is a careful control of pore size and size distribution, while maximizing SSA.
- Hydrogen uptake results on TiC-CDC obtained at low temperature and high pressure need to be extended to other CDC families, in search of high performance at lower T and P.
- This may be achieved by increasing isosteric heat of adsorption via surface treatment or transition metal doping.

	Comparison of Hydrogen Storage of TiC-CDC							
Material	Gravimetric H ₂ uptake (wt%)	Volumetric H ₂ uptake (g/L)	T (K)	P (bar)				
Bulk TIC-CDC	3.5	35	77	60				
Powder TiC-CDC	3.5	23	77	60				
Methane Storage of TiC-CDC Powder Activated by CO								

	Methane Storage of TiC-CDC Powder Activated by CO ₂					
	Material	Gravimetric H ₂ uptake (wt%)	Volumetric H ₂ uptake (v(STP)/v)	T (K)	P (bar)	
	TIC-CDC activated by CO ₂	16	146	273	35	
		18	161	273	60	

Comparison of excess volumetric and gravimetric CH₄ capacity

✓ Activation performed on TiC-CDC synthesized at 600 °C Cl₂

