LIST OF PROJECTS NOT REVIEW	VED
-----------------------------	-----

Project ID	Project Title	PI Name	Organization
ARRA-04	Advanced Direct Methanol Fuel Cell for Mobile Computing	Jim Fletcher	University of North Florida
ARRA-05	Jadoo Power Fuel Cell Demonstration	Ken Vaughn	Jadoo Power
ARRA-12	Demonstrating the Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint - Nextel Network	Kevin Kenny	Sprint
BES-01	Fluoropolymers, Electrolytes, Composites and Electrodes	Stephen Creager	Clemson University
BES-02	Ab-initio Screening of Alloys for Hydrogen Purification Membranes	David Sholl	Georgia Institute of Technology
BES-03	Theory, Modeling, and Simulation of Ion Transport in Ionomer Membranes	Philip Taylor	Case Western Reserve University
BES-04	The Study of Proton Transport Using Reactive Molecular Dynamics	David Keffer	University of Tennessee
BES-05	Surface-Directed Fabrication of Integrated Membrane-Electrode Interfaces	Kane Jennings	Vanderbilt University
BES-06	Activity and Stability of Nanoscale Pt- based Catalysts	Yang Shao- Horn	Massachusetts Institute of Technology
BES-07	Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: Mechanism, New Materials, and Characterization	Andrew Gewirth	University of Illinois
BES-08	Fundamental Studies of Electrocatalysis for Low Temperature Fuel Cell Catalysts	Nenad Markovic	ANL
BES-09	Engineering Catalytic Nanoporous Metals for Reactions Important to the Hydrogen Economy	Jonah Erlebacher	Johns Hopkins University
BES-10	Theoretical Insights Into Active and Durable Oxygen Reduction Catalysts	Matthew Neurock	University of Virginia

BES-11	An in situ Electrode-Potential- Controlled Nuclear Magnetic Resonance Investigation of Sulfur-Poisoning Effect on Pt-Based Mono- and Bi-metallic Nanoscale Electrocatalysts	YuYe Tong	Georgetown University
BES-12	Investigation of the Oxygen Reduction Reaction Activity of Heteroatom- containing Carbon Nano-structures	Umit Ozkan	Ohio State University
BES-13	In-Situ Studies of Active Sites and Mechanism for the Water-Gas Shift Reaction on Metal/Oxide Nanocatalysts	Jose Rodriguez	BNL
BES-14	Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production	Morris Bullock	PNNL
BES-15	Structure/Composition/Function Relationships in Supported Nanoscale Catalysts for Hydrogen	Peter Stair	Northwestern University & ANL
BES-16	Fundamentals of Hydroxide Conducting Systems for Fuel Cells and Electrolyzers	Bryan Pivovar	NREL
BES-17	Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells	Hector Abruna	Cornell University
BES-18	High Performance Nano-Crystalline Oxide Fuel Cell Materials	Thomas O. Mason	Northwestern University
BES-19	Nanostructured, metal-modified oxide catalysts for steam reforming of methanol and the water-gas shift reactions	Maria Flytzani- Stephanopoulos	Tufts University
BES-20	Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures	Carol Korzeniewski	Texas Tech University
BES-21	Atomic-scale Design of a New Class of Alloy Catalysts for Reactions Involving Hydrogen: A Theoretical and Experimental Approach	Manos Mavrikakis	University of Wisconsin
BES-22	Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts for the Production of Clean Hydrogen Streams	Gotz Veser	University of Pittsburgh
BES-23	Metal- and Metal Oxide-Supported Platinum Monolayer Electrocatalysts for Oxygen Reduction	Radoslav Adzic	BNL

BES-24	Development and Mechanistic Characterization of Alloy Fuel Cell	Anders Nilsson	Stanford Linear Accelerator Laboratory
BES-25	Catalysts Metal dissolution mechanisms in Pt- based alloys: Ideas for advanced PEM cathode design	Perla Balbuena	Texas A&M University
BES-26	Fundamental Studies of Electrocatalysis for Low Temperature Fuel Cell Catalysts (Poster of BES008 oral presentation)	Hoydoo You	ANL
BES-27	Theoretical Studies of Water-Gas Shift Reaction on Metal-Oxide Catalysts	Ping Liu	BNL
BES-30	Mechanism of Proton Transport in Proton Exchange Membranes: Insights from Computer Simulation	Greg Voth	University of Chicago
BES-31	Porous and Glued Ultrathin Membranes	Stephen Regen	Lehigh University
BES-32	The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers	Raymond Gorte	University of Pennsylvania
BES-33	Charge Transfer, Transport, and Reactivity in Complex Molecular Environments: Theoretical Studies for the Hydrogen Fuel Initiative	Michel Dupuis	PNNL
BES-34	Proton Conduction in Rare-earth Phosphates	Lutgard De Jonghe	LBNL
BES-35	The Dielectric Response of Hydrated PFSA Membranes – Measurements with Single Post Dielectric Resonators	Stephen Paddison	University of Tennessee
ED-01	Hydrogen Safety Training for First Responders	Steven Weiner	PNNL
ED-02	Education for Emerging Fuel Cell Technologies	Carl Rivkin	NREL
ED-16	Hydrogen Technology and Energy Curriculum (HyTEC)	Barbara Nagle	Lawrence Hall of Science at UC- Berkeley
ED-17	H2 Educate! Hydrogen Education for Middle Schools	Mary Spruill	NEED
ED-18	Hydrogen Knowledge and Opinions Assessment	Rick Schmoyer	ORNL

	Development of Micro-Structural		
FC-49	Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches	Silvia Wessel	Ballard
FC-53	Low Cost, Durable Seals for PEM Fuel Cells	Jason Parsons	UTC Power
FC-54	Transport Studies and Modeling in PEM Fuel Cells	Cortney Mittelsteadt	Giner Electrochemical Systems, LLC
FC-55	Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack	Amedeo Conti	Nuvera Fuel Cells
FC-56	Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions	Satish Kandlikar	Rochester Inst. of Technology
FC-57	7C: Intergovernmental Stationary Fuel Cell System Demonstration	Richard Chartrand	Plug Power Inc.
FC-58	Research & Development for Off-Road Fuel Cell Applications	Mike Hicks	IdaTech, LLC
FC-61	Diesel Fueled SOFC System for Class 7/Class 8 On-Highway Truck Auxiliary Power	Dan Norrick	Cummins
FC-62	Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications	Gary Blake	Delphi
FC-63	Novel Materials for High Efficiency Direct Methanol Fuel Cells	Chris Roger	Arkema
FC-64	New MEA Materials for Improved DMFC Performance, Durability, and Cost	Jim Fletcher	University of North Florida
FC-65	The Effect of Airborne Contaminants on Fuel Cell Performance and Durability	Richard Rocheleau	University of Hawaii
FC-66	Development of Thermal and Water Management System for PEM Fuel Cell	Zia Mirza	Honeywell
FC-67	Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers	Will Johnson	W.L. Gore
FC-68	Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials	Michael Mullins	Michigan Technological University

FC-69	Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines	Neal Sullivan	Colorado School of Mines
FC-70	Development of Kilowatt-Scale Fuel Cell Technology	Steven Chuang	University of Akron
FC-71	Alternative Fuel Cell Membranes for Energy Independence	Kenneth Mauritz	University of Southern Mississippi
FC-72	Extended Durability Testing of an External Fuel Processor for SOFC	Mark Perna	Rolls Royce Fuel Cell Systems Inc.
FC-73	Hydrogen Fuel Cell Development in Columbia (SC)	Kenneth Reifsnider	University of South Carolina
FC-74	Martin County Hydrogen Fuel Cell Development	Jeffrey Bonner- Stewart	Martin County Economic Development Corporation
FC-75	Fuel Cell Balance of Plant Reliability Testbed	Vern Sproat	Stark State College of Technology
PD-01	Investigation of Reaction Networks and Active Sites in Bio-Ethanol Steam Reforming over Co-based Catalysts	Umit Ozkan	Ohio State University
PD-43	Developing Improved Materials to Support the Hydrogen Economy	Michael Martin	Edison Materials Tech Center
PD-44	Purdue Hydrogen Systems Laboratory	Jay Gore	Purdue University
PD-49	H2 Permeability and Integrity of Steel Welds	Zhili Feng	ORNL
PD-50	Coatings for Centrifugal Compression	George Fenske	ANL
PD-57	Photoelectrochemical Hydrogen Production	Malay Mazumder	University of Arkansas Little Rock
PD-60	Advanced Sealing Technology for Hydrogen Compressors	Hooshang Heshmat	Mohawk Innovative Technologies
PD-61	Photochemical System for Hydrogen Generation	Alexander Parfenov	Physical Optics Corporation
PD-62	Nanotube Array Photoelectrochemical Hydrogen Production	Rikard Wind	Synkera Technologies Inc.

PD-63	Aqueous Phase Base-Facilitated Reforming (BFR) of Renewable Fuels	Brian James	Directed Technologies, Inc.
PD-64	Advanced PEM Based Hydrogen Home Refueling Appliance	Michael Pien	ElectroChem, Inc.
PD-65	Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi	Timothy Norman	Giner, Inc.
PD-66	Design, Optimization and Fabrication of a Home Hydrogen Fueling System	Brian Hennings	Lynntech
PD-67	Hydrogen by Wire - Home Fueling System	Luke Dalton	Proton Energy Systems
PD-68	Modeling Hydrogen Dispensing Options for Advanced Storage	Kurtis McKenney	TIAX, LLC
PD-69	Development of a Hydrogen Home Fueling System	Greg Tao	Materials and Systems Research, Inc.
PD-70	One Step Biomass Gas Reforming-Shift Separation Membrane Reactor	Mike Roberts	Gas Technology Institute
PD-71	High Performance, Low Cost Hydrogen Generation from Renewable Energy	Katherine Ayers	Proton Energy Systems
PD-72	Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production	Paul Liu	Media and Process Technology Inc.
PD-73	Zeolite Membrane Reactor for Water- Gas-Shift Reaction for Hydrogen Production	Jerry Y.S. Lin	Arizona State University
PD-74	Rapid Low Loss Cryogenic H2 Refueling	Salvador Aceves	LLNL
PD-75	Range Optimization for Fuel Cell Vehicles	Zhenhong Lin	ORNL
PD-76	Photoelectrochemical Generation of Hydrogen from Water Using Visible Light Sensitive Ferro-Electric BiFeO3 and Semiconductor Nanotubes	Mano Misra	University of Nevada Reno
SCS-11	Risk-Informed Separation Distances for H2 Facilities	Daniel Dedrick	SNL
ST-14	Overview of the DOE Hydrogen Sorption Center of Excellence	Lin Simpson	NREL

ST-16	Enhanced Hydrogen Dipole Physisorption: Henry's Law and Isosteric Heats in Microporous Sorbents	Channing Ahn	California Institute of Technology
ST-17	Single-Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports	David Geohegan	ORNL
ST-20	Neutron Characterization in Support of the Hydrogen Sorption Center of Excellence	Dan Neumann	NIST
ST-29	5-Year Review of Metal Hydride Center of Excellence	Lennie Klebanoff	SNL
ST-33	Discovery and Development of Metal Hydrides for Reversible On-board Hydrogen Storage	Mark Allendorf	SNL
ST-34	Aluminum Hydride Regeneration	Jason Graetz	BNL
ST-35	Reversible Hydrogen Storage Materials - Structure, Chemistry, and Electronic Structure	Ian Robertson	University of Illinois
ST-36	2010 Overview and Wrapup: DOE Chemical Hydrogen Storage Center of Excellence	Kevin Ott	LANL
ST-39	Amineborane-Based Chemical Hydrogen Storage	Larry Sneddon	University of Pennsylvania
ST-42	Low-Cost Precursors to Novel Hydrogen Storage Materials	Suzanne Linehan	Dow Chemical Company
ST-43	Ammonia Borane Regeneration and Market Analysis of Hydrogen Storage Materials	David Schubert	U.S. Borax
ST-52	Best Practices for Characterizing Hydrogen Storage Properties of Materials	Karl Gross	H2 Technology Consulting, LLC
ST-56	Solutions for Chemical Hydrogen Storage: Dehydrogenation of B-N and C-C Bonds	Karen Goldberg	University of Washington
ST-57	Chemical Hydrogen Storage Using Ultra-High Surface Area Main Group Materials & The Development of Efficient Amine-Borane Regeneration Cycles	Philip Power	University of California Davis
ST-58	Electrochemical Hydrogen Storage Systems	Digby Macdonald	Pennsylvania State University

	1		
ST-59	Chemical Hydrogen Storage Using Aluminum Ammonia-Borane Complexes	Fred Hawthorne	University of Missouri
ST-60	Main Group Element and Organic Chemistry for Hydrogen Storage and Activation	David Dixon	University of Alabama
ST-61	Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials	Bruce Clemens	Stanford University
ST-62	Discovery of H2 Storage Materials: LiMgN and Mg-Ti-H	Zak Fang	University of Utah
ST-63	Electrochemical Reversible Formation of Alane	Ragaiy Zidan	SRNL
ST-64	First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems	Karl Johnson	University of Pittsburgh/ Georgia Institute of Technology
ST-65	Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage	Ping Liu	HRL Laboratories
ST-66	Catalyzed Nano-Framework Stabilized High Density Reversible Hydrogen Storage Systems	Xia Tang	UTRC
ST-67	Neutron Characterization and Calphad in Support of the Metal Hydride Center of Excellence	Terry Udovic	NIST
ST-68	Metal Borohydrides, Ammines, and Aluminum Hydrides as Hydrogen Storage Materials	Gilbert Brown	ORNL
ST-69	Development and Evaluation of Advanced Hydride Systems for Reversible Hydrogen Storage	Joe Reiter	NASA JPL
ST-70	Amide and Combined Amide/Borohydride Investigations	Don Anton	SRNL
ST-71	Effect of Trace Elements on Long-Term Cycling/Aging Properties and Thermodynamic Studies of Complex Hydrides for Hydrogen Storage	Dhanesh Chandra	University of Nevada Reno
ST-72	Synthesis of Nanophase Materials for Thermodynamically Tuned Reversible Hydrogen Storage	Channing Ahn	California Institute of Technology
ST-74	Hydrogen Storage Materials with Binding Intermediate between Physisorption and Chemisorption	Juergen Eckert	University of California Santa Barbara

ST-75	Optimization of Nano-Carbon Materials for Hydrogen Sorption	Boris Yakobson	Rice University
ST-76	Nanoengineered Graphene Scaffolds with Atom Substitution for H2 Adsorption	Jim Tour	Rice University
ST-77	Carbon Aerogels for Hydrogen Storage	Ted Baumann	LLNL
ST-78	Hydrogen Storage by Spillover	Ralph Yang	University of Michigan
ST-79	Characterization of Hydrogen Adsorption by NMR	Yue Wu	University of North Carolina
ST-80	Advanced Boron and Metal Loaded High Porosity Carbons	Mike Chung	Pennsylvania State University
ST-81	Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping	Jie Liu	Duke University
ST-82	Discovery of Materials with a Practical Heat of H2 Adsorption	Alan Cooper	Air Products
ST-83	Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels	Alex Ly	Quantum Fuel Systems Technologies Worldwide, Inc.
ST-84	Purdue Hydrogen Systems Laboratory	Jay Gore	Purdue University
ST-85	HGMS: Glasses and Nanocomposites for Hydrogen Storage	Kristina Lipinska-Kalita	University of Nevada Las Vegas
ST-86	The H-Prize	Jeffrey Serfass	Hydrogen Education Foundation
TV-03	Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project	Mike Veenstra	Ford
TV-04	Hydrogen to the Highways	Ron Grasman	Daimler

(This page intentionally left blank)