
Analysis of Energy Infrastructures and 
Potential Impacts from an Emergent 

Hydrogen Fueling Infrastructure

Andy Lutz, Dave Reichmuth
Sandia National Laboratories

Livermore, CA

June 8, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

AN002



2

Overview

• Start – Dec. 2007
• Finish – Sep. 2012 
• 50% complete

A. Future Market Behavior
B. Stove-piped/Siloed Analytical 

Capability
E. Unplanned Studies and 

Analysis

• Total project funding
– DOE $590K

• Funding received in FY2010
– $250K

Timeline

Budget

Barriers

Analyze issues and long term 
impacts related to 
infrastructure evolution, 
hydrogen fuel, and vehicles 
(Task 1)

Targets
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Relevance / Objectives

Objectives
• Use dynamic models of infrastructure systems to analyze the 

impacts of widespread deployment of hydrogen technologies
• Identify potential system-wide deficiencies that would otherwise 

hinder infrastructure evolution, as well as mitigation strategies to 
avoid collateral effects on supporting systems

Relevance
• Transition to H2 fueling is expected to rely on distributed steam-

methane reforming (SMR) and stationary fuel cells (SFC); we must 
understand the impact of hydrogen vehicles and stationary fuel 
cells on the infrastructure
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Milestones

MM / YYYY Milestone

February / 2010 Develop modules to simulate distributed 
Combined Heat and Power (CHP) 
systems for stationary power and 
distributed hydrogen production

August / 2010 Extend analysis to a coal-burning region;
Modify model input and conduct 
infrastructure assessment
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Approach

• Analysis-driven approach defined by programmatic needs
– Provide analysis and insight into the dynamic behavior of complex 

systems
• System dynamics: Methodology

– Choose a region to define the system
• Selected California (CA) as first application

– Pose detailed questions
• What are the potential reductions of CO2 emissions by stationary FC systems?
• What is the effect of stationary FC systems on the existing grid and fuel markets? 
• Can stationary FC systems provide distributed H2 production?

• System dynamics: Analysis
– Formulate SD models of infrastructure components and interrelations to a 

sufficient level of detail
– Use Powersim software to quickly generate code
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Technical Progress: added SFC for distributed 
power generation and interactions with infrastructure 

SFC Penetration
• Fixed penetration model

– NOT based on economic choice, due to 
uncertainty in future technology & costs

– Use optimistic implementation goals
Market Interactions
• Competition between PHEVs, HFVs, and 

future CAFE vehicles
– Compete on fuel & vehicle costs
– Vehicles coupled to electric, natural 

gas (NG), & gasoline markets
• In California, electricity demand strongly 

coupled to NG supply infrastructure
• Electric generation for Renewable Portfolio 

Std (RPS)
• 33% by 2020

Natural Gas

Gasoline

Vehicle
Choice

Grid
Electricity

H2 via
SMR

SFC
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Assumptions
Infrastructure Model
• Electric Supply

– Marginal generation is NG
– Other generation is “must run”
– No elasticity in supply/demand 
– Plug-in vehicles re-charged at night

• Natural Gas Supply
– Supply elasticity for CA market
– Imported and domestic supply

• Gasoline Supply
– Oil price: linear projection
– Elasticity for CA refinery supply

• Hydrogen Supply
– Distributed SMR
– Zero-carbon H2 (exact path 

unspecified)

Vehicle Model
• Conventional vehicles

– Gasoline fueled: 20 mpg today
– CAFE regulation: 35 mpg by 2016

• Plug-in Hybrid Electric Vehicles
– 48 mpg in gasoline mode
– 0.35 kWh/mile electric mode
– 1/3rd of miles in gasoline mode 

(40-mile electric range)
• Hydrogen Fuel Cell Vehicles

– 70 mile / kg
• Vehicle adoption

– Adjusted to scenario of Greene et al
(ORNL, 2008) 

– 6% yearly sales rate
– 20 year vehicle lifetime (5% scrap rate)
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Assumptions (cont’d)
Stationary FC Model
• Large Scale: 300 - 500 MW

– High Temp FC system
– NG operation with internal reforming
– 47% NG to electric efficiency
– 30% NG to heat in CHP mode
– 10% NG to electricity displaced by chilling
– 15% to H2 in co-production mode

• Reduce electric efficiency to 40%
– Size to meet electric load with high capacity 

factor
• Use heat or cooling when load exists

• Small scale: 2 - 5 kW
– Polymer Electrolyte Membrane (PEM)
– NG operation with integrated reformer
– 40% NG to electric efficiency
– 30% NG to heat in CHP mode

• Small scale: 2 kW
– PEM FC as dedicated PHEV chargers
– No integration to house electricity

Stationary FC Applications
• Commercial 

– Hotels, Hospitals, Office 
– Large scale systems
– Combined heat or hydrogen and 

power
• Residential

– Small scale systems
– Distributed power
– Limited to fraction of residences 

with 2 kW average load
• PHEV charging

– Overnight charging
– Avoid local distribution issues for 

utilities
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Electricity
• Supply:

– Imports (31% in 2007)
• Coal (54% of imports)

– In-state production
• Must-run: nuclear, hydro, 

geo, solar, wind, biomass
• Variable: NG

– Distributed production by 
SFC in large building & 
homes with CHP

• Demand:
– Hourly load data (Cal-ISO)
– Daily PHEV charging
– Building demands for 

distributed SFC
• Price:

– Weighted average of costs
– SFC electricity priced by 

fixed & variable costs

Dynamic model couples 
energy markets to vehicle adoption model

Natural Gas
• Supply:

– Imports & in-state 
production

• Demand:
– Electric generation
– Industrial, commercial, 

residential, and CNG 
vehicles (fixed)

– HFCV demand from 
SMR

– Demand from SFC 
systems

• Price:
– Market elasticity

• Long & short term
– Determines H2 price

Gasoline
• Supply:

– Refinery capacity for 
CA compliant gasoline

• Demand:
– Conventional and 

PHEV consumption
• Price:

– Oil price specified in 
time

– Refining margin 
modeled with market 
elasticity

• Short-term elasticity 
for supply

• Long-term elasticity 
identifies major 
capacity additions
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Model provides a tool for
examining a range of scenarios

• Key input parameters
– Vehicles: 

• HFV mileage; learning curve; consumer acceptance; battery vs plug-
in; daily charging profile; gasoline mileage improvements (CAFE or 
advanced ICE); H2 production alternatives (low-carbon); 
sales/discard rates

– SFC: 
• Electric efficiency; combined heat/cooling factors; matching of heat, 

cooling, & electric loads with demand; H2 co-production; fixed & 
variable costs of electricity & H2; penetration rate in building types

– Grid electricity:
• Baseload, marginal, & new generation; growth in demand; changes 

in nuclear, coal, NG, & renewable generation
– NG:

• Import capacity; domestic production; demand growth (other than 
vehicles or electric) 

– Other:  carbon tax
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Baseline scenarios for 
California’s CO2 emissions 

• BAU is 1% / yr growth for:
– Vehicles
– Electricity demand

• Data points: CEC 
– Gross CO2 all sectors

• Start with “BAL” scenario
– Business-as-Legislated
– CA’s Renewable Portfolio 

Standard
• 33% by 2020

– US CAFE regulation on LDV
• 35.5 mpg by 2016

Existing Legislation 
to give 18% reduction
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Optimistic Stationary FC penetration 
leads to a small effect on CO2 emissions

• Blue scenario is optimistic SFC 
penetration in:

– Large buildings (offices, hotels)
– High-use homes

• By 2050:
– SFC capacity = 10 GW

• Matches CEC Assessment (2005) of 
CHP potential in CA

• State load varies 30 – 70 GW
– SFC generation = 67 TWh

• CA Total = 420 TWh 
• 16% of electric demand

– SFC reduces CO2 emissions ~2%

Units
(1000)

Size
(kW)

Capacity
(GW)

Offices 7 400 2.7

Hotels 8 250 1.9

Homes 1300 4 5.2 0
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Why is the impact of SFC 
on California’s CO2 emissions so limited?

• Efficiency improvement, but 
same marginal fuel
– Displacing NG generation at 

40% by SFC on NG at 40-47% 
(electrical) 

• CHP benefit? 
– Compare to existing 

infrastructure: 
• Gas Turbine & Heater

CHP
47% W
30% Q

640 kWF

300 kWe

190 kWth

GT
44%

750 kWF 300 kWe

190 kWth

Trans
90%

Heater
80%

240 kWF

990 kWF

Maximum Fuel Savings by SFC + CHP
( ) %35

kW990
kW640kW990S

F

FF =
−

=
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CHP savings depend on matching 
of heat load to electric load 

• Derived contours of fuel savings 
parameterized by:
– Fuel cell electric efficiency
– Fraction of available heat used

• Heat provided to building divided 
by FC heat available

• Blue points & error bars show 
average and range of operation

• FC systems sized to achieve an 
electric capacity factor ~75% 
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H2 Fueled Vehicles significantly
reduce CO2 emissions 

• Use vehicle adoption 
parameters set to match 
optimistic Alternative Fuel 
Vehicle scenario

– AFV includes HFV & PHEV
• Beyond minima at 2040, CO2

emissions increase
– Continued fleet growth
– Lack of C-free fuel

• H2 Fueled Vehicles (HFV) make 
~ ½ of fleet by 2050

– Efficiency advantage 
• 70 mile/kg H2

– PHEV suffer from gasoline use
• H2 @ 4.00 $ / kg

• Gas @ 4.50 $/gal
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Penetration of SFC systems 
can provide significant H2 for vehicles

H2 from SFC
• H2 available:

– Fraction of NG input = 15%
• Assume 85% H2 utilization in FC

– Reduced electricity efficiency of FC 
from 47% to 40%

• SFC provide 11% of H2 demand
– Supply 2 Million H2 vehicles

SFC dedicated to EV charging
• Cost effectiveness is highly dependent 

on SFC capital and maintenance costs
• Effect on CO2 emissions is minimal in 

regions with NG as marginal supply
• Caveat: utility distribution concerns 

are not addressed by model
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Model projects a large impact
when NG-fired SFC displaces coal

• Analysis of a coal-dominated 
region is a Future project 
Milestone (August)

• Using CA regional parameters, 
but:
– Adjust generation to reflect US 

average mix
– Apply coal as marginal 

generation
• 8% CO2 reduction by SFC

– Due to fuel change & 
improved efficiency

CO2 In Fuel
(kg / MJ)

η
(%)

CO2 per Work
(kg / kWh)

Coal 113 33 1.23

NG 54 40 0.49
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Coal 13 50
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Renewable 29 12
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Stochastic sensitivity: Higher price of zero-carbon 
H2 requires a carbon tax to spur HFV sales 

• Contours of HFV 
quantity on road by 
2050

• H2 Supply:
– Zero-Carbon H2 at 

$6/kg
– SMR H2 at ~$4/kg 

before C-tax
• At low penetration of 

Zero-C H2, carbon 
tax has little impact 
on HFV sales

• More Zero-C H2
requires larger 
carbon tax to 
motivate HFV sales
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Summary

• Existing legislation on transportation and electric sectors is 
projected to give 18% reduction in CO2 emissions for CA

• Stationary FC systems have a small effect on CA’s CO2 emissions
– Effect of SFC systems with a maximum of 35% relative fuel savings is limited by 

the potential for CHP systems in CA buildings
– An optimistic penetration for SFC is 16% of total electricity generation
– Overall reduction in CO2 is ~2%

• H2 Fueled Vehicles can significantly reduce CO2 emissions
– Requires large HFV penetration ~50% of CA fleet by 2050

• H2 produced from SFC could potentially supply 11% of HFV fleet 
demand in 2050

– Approximately 2 Million vehicles
• Preliminary simulations show that the reduction of CO2 emissions by 

SFC can be significant when displacing coal generation
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Future Work

• Remainder of FY10:
– Extend approach to coal-burning region of US

• Compare SFC effect on carbon emissions due to fuel switching to NG
• Examine effect of carbon tax
• Examine SFC dedicated chargers for PHEV

• FY11:
– Explore a dynamic connection to FC Power model (NREL) for SFC performance 

parameters and load matching
– Work with utility partner to consider the equipment trade-off savings potential of 

SFC dedicated as PHEV charging
– Couple electricity model to more detailed models of generation and dispatch
– Consider economics of SFC systems in a penetration model with dynamic 

feedback
– Consider coupling of system dynamics tools to Macro-System Model
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Supplemental Slides
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Combined cooling and power 
compared to vapor cooling cycle

• Combined cooling example
– Traditional “efficiency” 
– Cannot add work and cooling

• Refrigeration efficiency defined 
by coefficient-of-performance
COP = Q / We = 4

• Fuel saving of CCP compared to 
grid system with refrigeration
(830 – 640) / 830 = 23%

CHP
47% W
20% Qc

130 kWcool

GT
44%830 kWF

300 kWe

130 kWcool

Trans
90%

Refrigeration
COP = 4

33 kWe

( ) %52
kW640

kW33300

F

e =
+

=η

Efficiency of CCP system
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