Lawrence Livermore National Laboratory

Hydrogen and Water: Engineering, Economics and Environment

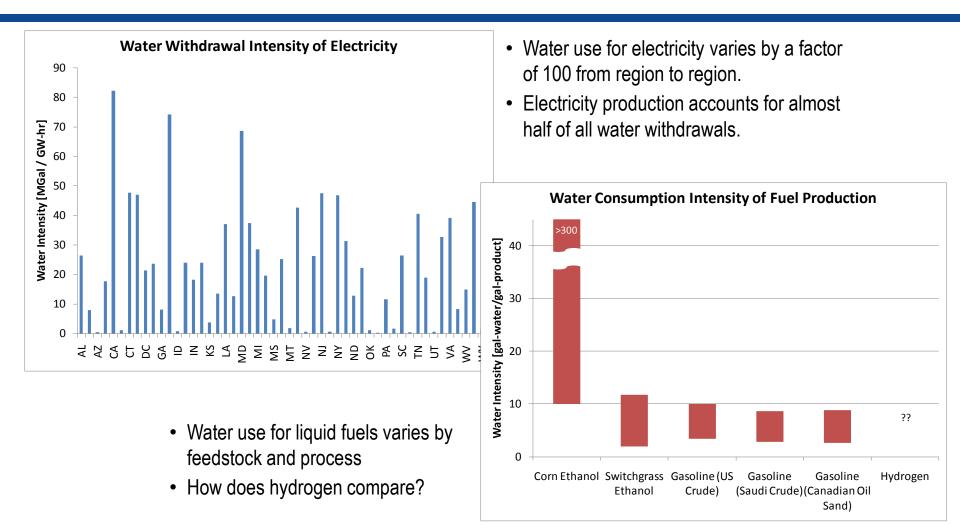
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # AN007

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Overview

 Systems Analysis Barrier A: October, 2007 • Project Start: Euture Market Behavior October, 2010 • Project End: • Systems Analysis Barrier E: Unplanned Analyses² • Percent Complete: **98%**¹ Production Barrier D: Feedstock Issues Timeline **Barriers** \$640k + \$200k Total Funding: NREL • FY07 Funding: \$200k HyDRA, MSM Coordination • FY08 Funding: \$240k Sandia • FY09 Funding: \$200k • FY10 Funding: \$200k² MSM Interface, Water Model **Budget** Partners


Lawrence Livermore National Laboratory

1. As of April 8, 2010, Final Report is undergoing Peer Review.

2. New emphasis on Flow Charts for 2010

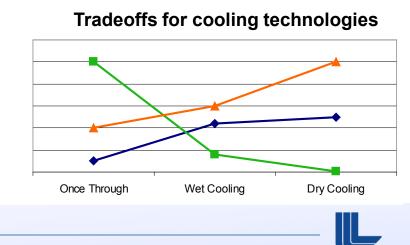
Relevance: feedstock - the energy-water nexus

Objectives

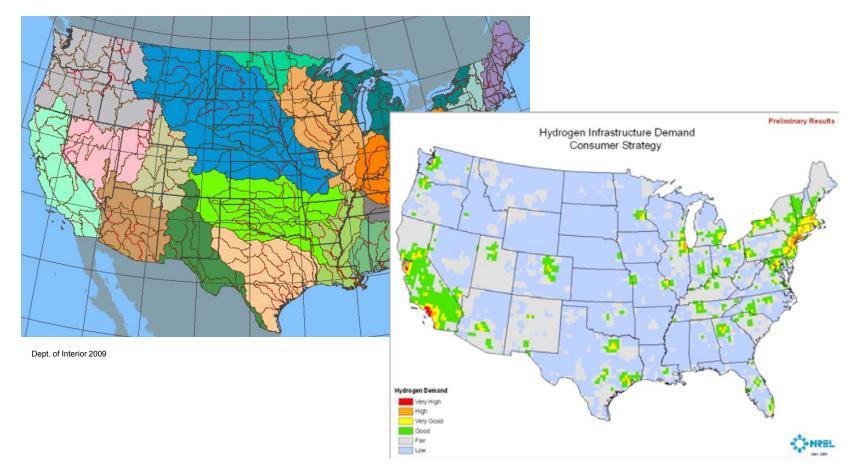
- Quantify the *impact of water* on a future hydrogen economy
 - Economic impact of water prices on hydrogen production
 - Regional impact of hydrogen production on regional water resources
- Production Barrier D: Feedstock Issues
 - Energy-Water Nexus
- Systems Analysis Barrier A: Future Market Behavior
 - Timing and magnitude of H₂-Water stresses
- Systems Analysis Barrier E: Unplanned Analyses

Approach: H2A/MSM Integration

- Process water
 - Vendor information
- Cooling load
 - Calculate from energy balance
- Electricity demand
 - Direct from H2A spreadsheet
- Feedstock/fuel
 - Direct from H2A spreadsheet


Select the Material				
Feed or utility	Cooling Water			
\$(2005)/gal Use H2A Default Usage per kg H2 (gal)	\$0.000079	OR Enter	Price	
Cost in Startup Year	\$0		Add	Delete
Lookup Prices	Yes		Add	Donato
RT_NONE_TOP		I		
Feed or utility	\$(2005)/gal	Usage per kg H2 (gal)	Cost in Startup Year	Lookup Prices
Process Water	0.0016654	5.77	\$4,482	Yes
Total Non Energy Byproduct Credits (\$/year) Total Feedstock Costs (\$/year) Total Utility Costs (\$/year)	\$0 \$508,426 \$46,733			
Total Byproduct Credits (\$/year)	\$0			
Other Variable Operating Costs		_	Notes	
Other variable operating costs (e.g. environmental surcharges) (\$/year) Other Material Costs (\$/year)	\$1,800.00			sts, non-feedstock fuels, environmental ated at \$800/month with 50% being attri
Waste treatment costs (\$/year)	30			
Solid waste disposal costs (\$/year)				
Total Unplanned Replacement Capital Cost Factor (% of total direct depreciable costs/year)	0.00%	Enter Specific Costs	Click to enter data for speci	fic years on Replacement Costs She
Royalties (\$/year)	\$0.00	🗹 H2a Default		
Operator Profit (\$/year)	\$0.00	🔽 H2a Default		
Subsidies, Tax Incentives (\$/year)	\$0.00	🔽 H2a Default	Enter as a positive number	
Refueling Station O&M costs (\$/year)	\$0.00		See Capital Costs section a calculation sheet	bove to link to the Refueling Station
Total Variable Operating Costs (\$/year)				
	\$556 958 75			

DOE Hydrogen Program, 2008

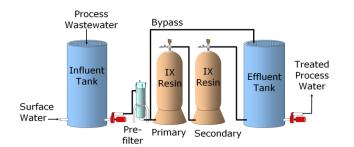


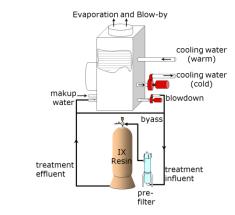
Approach: Economic optimization

- Different water treatment and cooling technologies have different capital vs. O+M (water and electricity purchase) tradeoffs.
- Find the plant-gate water price cutoffs that mark the transition between increasingly water-conserving technologies.
- Perform sensitivity analysis to:
 - plant gate water quality
 - electricity price

Approach: regional watersheds and demand

NREL, 2008


Accomplishments: Technology Analysis


Central SMR Water Treatment and Cooling Options: 379,387 kg hydrogen per day, no CCS							
Cooling Method		Tower	Tower	Dry	Dry		
Cooling Water Treatment		Ion Exchange	none	n/a	n/a		
Process Water Treatment		Ion Exchange	Reverse Osmosis	Ion Exchange	Reverse Osmosis		
Zero Discharge?		Yes	No	Yes	No		
Water Resource (TDS, ppm)		Surface (800)	Surface (800)	Surface (800)	Surface (800)		
Water Withdrawal	gpm	1202	2235	441	706		
Water Discharge	gpm	0	1033	0	265		
Power Draw	kW	1460	1146	3093	3227		
Capital Cost	\$	117,100,000	5,066,000	63,4245,000	14,100,000		
Fixed O+M	\$/yr	582,000	567,000	314,000	327,000		
Treatment Variable O+M	\$/kg-H2	0.84	0.03	0.38	0.01		

Forecourt Electrolysis Water Treatment and Cooling Options: 1500 kg hydrogen per day							
Cooling Method		Cooling Tower	Cooling Tower	Dry Cooling	Dry Cooling		
Cooling Water Treatment		none	none	none	none		
Process Water Treatment		Ion Exchange	Reverse Osmosis	Ion Exchange	Reverse Osmosis		
Zero Discharge?		No	No	Yes	No		
Water Resource (TDS, ppm)		Municipal (400)	Municipal (400)	Municipal (400)	Municipal (400)		
Water Withdrawal	gpm	8.0	8.8	2.1	2.9		
Water Discharge	gpm	0.9	1.74	0	0.84		
Power Draw	kW	7.0	8.6	18.8	20.4		
Capital Cost	\$	162,000	58,000	328,000	224,000		
Fixed O+M	\$/yr	22,000	22,000	111,000	111,000		
Treatment Variable O+M	\$/kg-H2	0.22	0.02	0.21	0.01		

Accomplishments: System Economic Analysis

	Treatment Systems Analyzed						
	Cooling Technology	Water Treatment Technology	Water Discharge				
Α	Cooling Tower	Ion Exchange	Zero				
В	Cooling Tower	Reverse Osmosis	Minimal				
С	Cooling Tower	Ion Exchange	Conventional				
D	Cooling Tower	Reverse Osmosis	Conventional				
Е	Air Cooling	Ion Exchange	Zero				
F	Air Cooling	Reverse Osmosis	Minimal				
G	Air Cooling	Ion Exchange	Conventional				
Н	Air Cooling	Reverse Osmosis	Conventional				

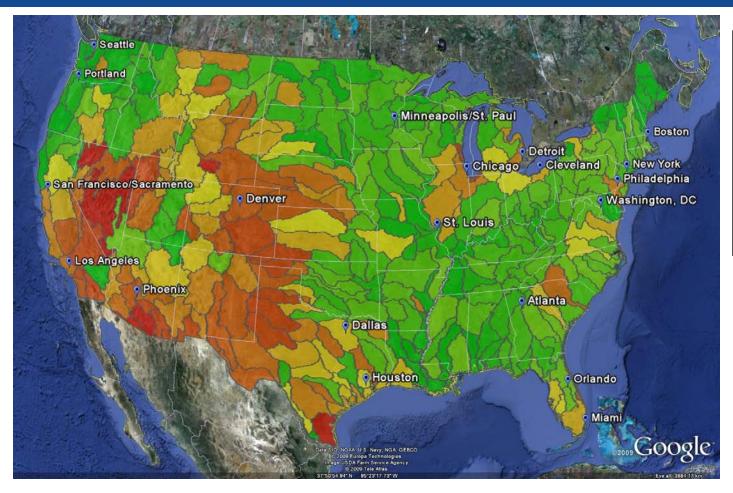
Assumptions

- H2A Current Central SMR Default Values
 - 28-May-08 Version
 - Non-water capital, O+M, Tax, etc.
 - Electricity Price

Variables

- Water
 - Withdrawal amount and price
 - Discharge amount and price
 (implemented through "byproduct")
- Treatment and Cooling Costs
 - Capital, Fixed and Variable O+M
- Treatment and Cooling Energy Use

Accomplishments: H2A Analysis (Central SMR)¹


Water Purchase Price [\$/gal]								
		\$0.0001	\$0.001	\$0.01	\$0.10	\$1.00		
	\$0.0001	1.356993	1.362263	1.414953	1.941862	7.21095	Cooling	
	\$0.001	1.35815	1.363419	1.41611	1.943019	7.212107	Cooling	
	\$0.01	1.369715	1.374985	1.427675	1.954584	7.223672	Tower,	
	\$0.10	1.48537	1.490639	1.54333	2.070238	7.339326	Reverse	
	\$1.00	2.641911	2.64718	2.699871	3.22678	8.495868	Osmosis	
Water	\$0.0001	1.955287	1.956871	1.97271	2.131106	3.715065		
Discharge	\$0.001	1.955287	1.956871	1.97271	2.131106	3.715065	Dry Cooling, Deionization	
Price	\$0.01	1.955287	1.956871	1.97271	2.131106	3.715065	Zero	
[\$/gal]	\$0.10	1.955287	1.956871	1.97271	2.131106	3.715065		
	\$1.00	1.955287	1.956871	1.97271	2.131106	3.715065	Discharge	
	\$0.0001	1.384619	1.387154	1.412512	1.666089	4.20186	Dry Cooling	
	\$0.001	1.38557	1.388106	1.413464	1.667041	4.202812	Dry Cooling,	
	\$0.01	1.395089	1.397624	1.422982	1.676559	4.21233	Reverse	
	\$0.10 1.49027 1.4928	1.492806	1.518163	1.77174	4.307511	Osmosis Treatment		
	\$1.00	2.442082	2.444618	2.469975	2.723552	5.259323	neatheilt	

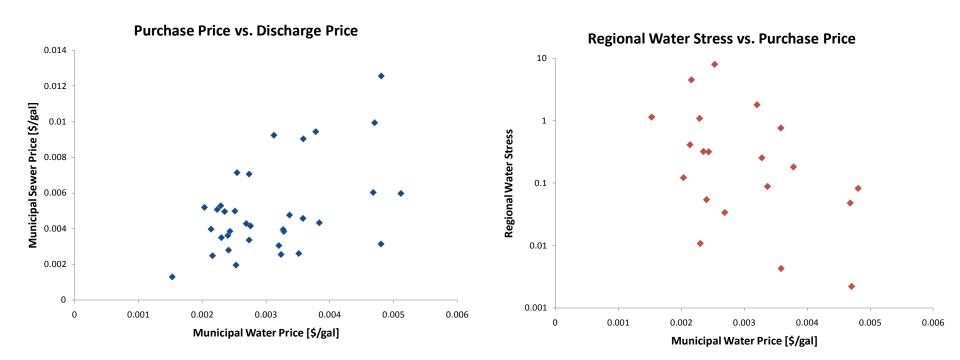
Lawrence Livermore National Laboratory

1. Cells with a red background represent the lowest cost hydrogen under a specific purchase/discharge price regime

Accomplishments: Watershed-Level Water Stress Analysis

Water Stress Definition: Total withdrawals within the watershed divided by the total influx (precipitation and river flow) into the watershed. Upstream withdrawals are accounted for.

Green:	Stress < 1
Yellow:	Stress ~ 1
Red:	Stress >1


Water Stress > 1 is not necessarily unsustainable because \sim 3/4 of water may be returned to surface flows

Accomplishments: Hydrogen Roll-Out Regional Analysis¹

Metro Area	Water Stress	Water used for Hydrogen (MGal/day)	% of supply used for hydrogen	% increase in industrial water usage	Water Supply Definition:
New York	0.04	15.6	0.02%	16.1%	
Los Angeles	2.01	12.3	1.14%	7.1%	Total influx (precipitation
Chicago	1.17	8.9	0.08%	0.8%	and river flow) into the
Washington	0.09	7.5	0.02%	6.8%	watershed(s) that feed
San Francisco/ Sacramento	0.18	5.1	0.01%	2.8%	the metro area.
Philadelphia	0.81	3.9	0.09%	1.6%	Upstream withdrawals
Boston	0.05	8.4	0.05%	20.6%	are accounted for.
Detroit	1.13	5.9	0.16%	0.8%	
Dallas	0.34	5.7	0.08%	14.0%	
Houston	0.27	5.4	0.08%	2.5%	
Atlanta	0.09	4.9	0.01%	1.5%	Industrial Usage:
Miami	0.44	1.4	0.02%	5.5%	Total withdrawals by
Seattle	0.00	1.8	0.00%	2.2%	industrial users within
Phoenix	4.88	2.8	0.44%	44.0%	the metro area
Minneapolis/St. Paul	0.06	2.8	0.01%	6.4%	watershed(s).
Cleveland	0.33	2.3	0.04%	1.5%	
Denver	8.75	2.5	0.66%	5.0%	
St. Louis	0.01	2.4	0.00%	6.2%	
Portland	0.01	1.6	0.00%	0.3%	
Orlando	0.15	1.0	0.01%	1.0%	

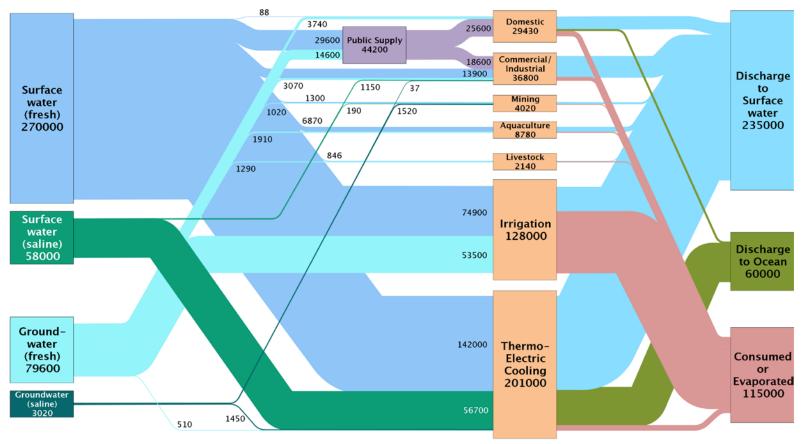
Accomplishments: Regional Water Economic Analysis

Lessons Learned:

Water discharge is likely to be more expensive than water withdrawal.

Water price is not positively correlated with water stress.

Collaborations


- Energy-Water nexus group
 - NETL
 - Sandia
- NREL
 - MSM team
 - RPM/HyDRA

Future Work

- Integrate with MSM, HyDRA
- Energy and Water Flow Charts
 - International
 - National
 - Regional
 - Sectoral

Future Work

Estimated U.S. Water Flow in 2005: 410000 Million Gallons/Day

LUN, 2009. Data is based on USGS Circular 1344, October 2009. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Commercial water use is not reported by USGS, it is estimated to be the fraction of municipal supply that is not delivere to residences and includes multicipal water sea and convergence losses frame and components due to indegendenter rounding LUN-MI-416325.

- Water price does not currently "behave" according to traditional supply/demand relationships.
- The price of water and water treatment equipment is unlikely to affect the price of hydrogen by more than 5% (far less than \$0.10/kg-H₂).
- Water is abundant at the national level, but...
 - Permitting/allocation will be problematic in regions with high water stress
 - Rapid expansion of "industrial" water use in some regions requires caution.
- Energy-water nexus affects all future fuels
 - Hydrogen, Biofuels, EV/PHEV, GTL, CTL...