

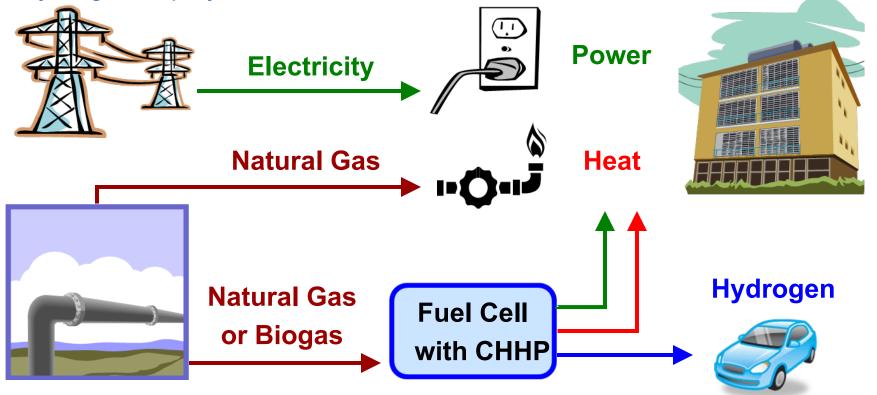
Innovation for Our Energy Future

Fuel Cell Power Model: Evaluation of CHP and CHHP Applications

2010 Annual Merit Review and Peer Evaluation Meeting Darlene Steward Mike Penev National Renewable Energy Laboratory June 8, 2010

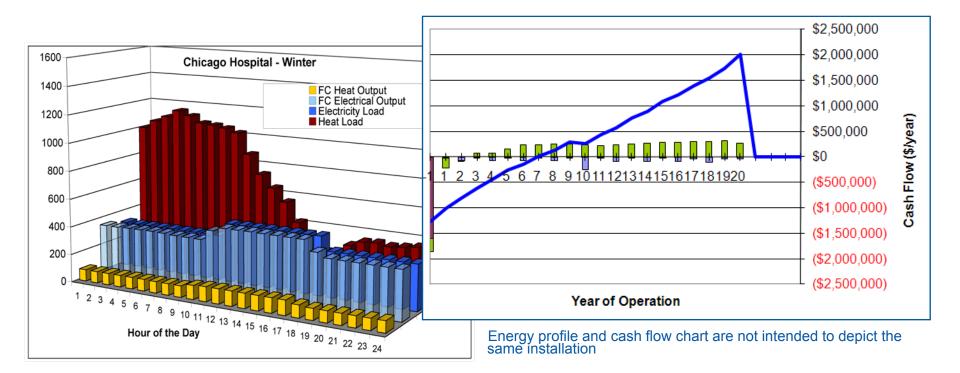
This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


Overview

Timeline	Barriers
Project start date January 2008 Project end date Fuel Cell Power Model v1.0 Completed Sep. 08 Fuel Cell Power Model v1.1 Completed Sept. 09 (published November 2009) Fuel Cell Power Model v1.2 to be completed Aug. 2010 Percent complete Work on version 1.2 is 80% complete	 Section 4.5 of the Program's RD&D Plan B: Stovepiped/siloed analytical capabilities C: Lack of consistent data, assumptions, and guidelines E: Unplanned studies and analysis
Budget	Partners
Total project funding \$530K to NREL Funding received in FY08 \$130K Funding for FY09 \$200K Funding for FY2010 \$200K	Peer reviewers from: • Argonne National Laboratory • Colorado School of Mines • DTI • Fuel Cell Energy • Logan Energy • Pacific Northwest Laboratory • Rensselaer Polytechnic Institute • Sandia National Laboratory • UC Davis • UC Irvine • UCSD • Versa-Power

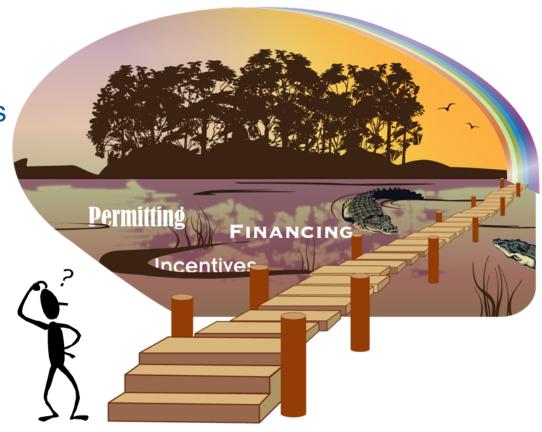
Relevance – Fuel Cell Power Model Allows Analysis of New Transition Strategies


Hydrogen infrastructure costs for early transition phase are large, and are relatively high risk due to uncertainty of demand.

The Fuel Cell Power Model allows analysis of combined heat, hydrogen and power (CHHP) systems, which may improve hydrogen deployment.

Relevance – Objectives

- Accurately model performance for stationary fuel cells in combined heat and power (CHP) and combined heat, hydrogen and power (CHHP) applications
- Combine detailed performance information with a comprehensive discounted cash flow methodology to evaluate lifecycle costs

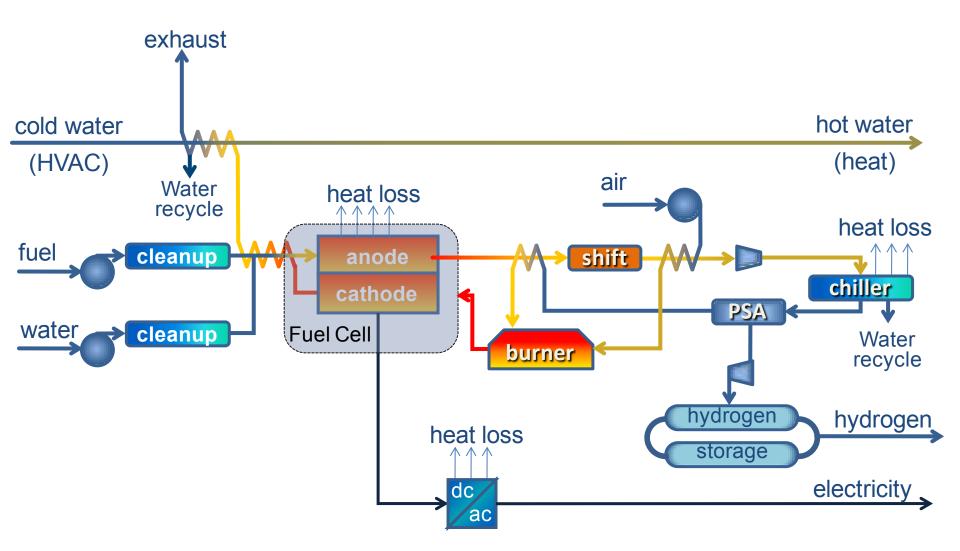


Relevance – Business Case Tab will Streamline Business Case Analysis

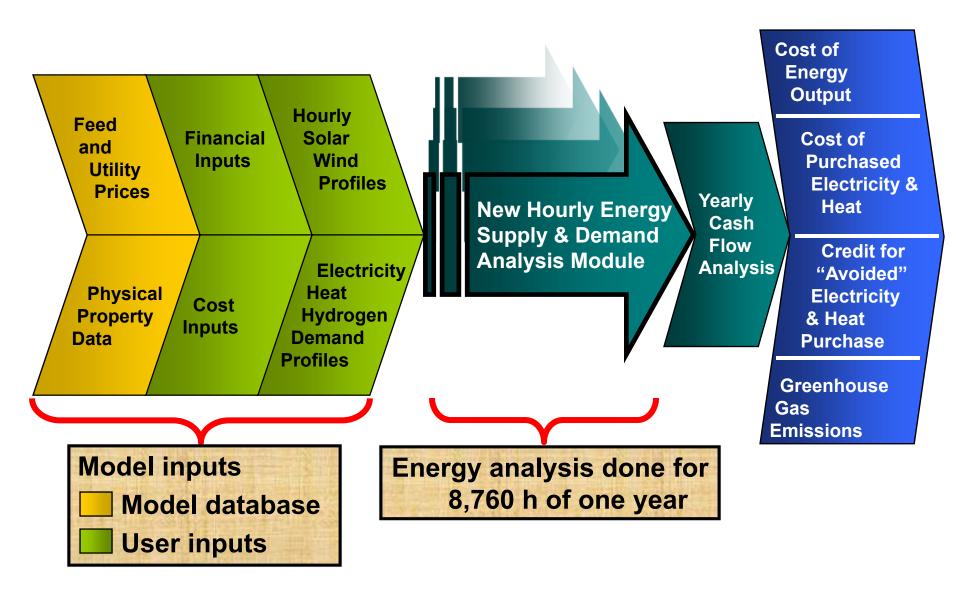
Help business decision-makers see whether "the view is worth the climb"

Decision-makers must navigate uncertainties & unknowns

- Accurate assessments of costs and benefits
- Financing
- Permitting
- Regulations
- Satisfying requirements for incentives
- Utility interconnect agreements.


Relevance: Impact on Barriers

Barrier	Impact
Stovepiped/siloed analytical	Model links distributed power and production of hydrogen for vehicle fuel
capabilities	 Combines fuel cell performance model with established cash flow analysis
	• H2A-based discounted cash flow model dovetails with other DOE tools (H2A, HDSAM, MSM, HyDRA, SERA)
Lack of consistent data, assumptions,	• Built on the "H2A Platform" – a well established lifecycle cost analysis tool
and guidelines	Standard H2A financial assumptions
	Transparent and valid comparisons between FCPower model, H2A & HDSAM results
Unplanned studies	Additional built-in capability for analysis of:
and analysis	Energy storage (wind > electrolysis > hydrogen > FC > electricity)
	Wind and solar integration in CHP, CHHP applications
	Backup power with a hydrogen (PEM) fuel cell


Technical Approach – MCFC System Simplified Model for CHP System

Technical Approach – MCFC System Simplified Model for CHHP System

Technical Approach – Fuel Cell Power Model Hourly Energy Analysis Module Was Added

Technical Approach – Business Case Tab

Provide a single simple-to-use home for "what-if" business case analysis

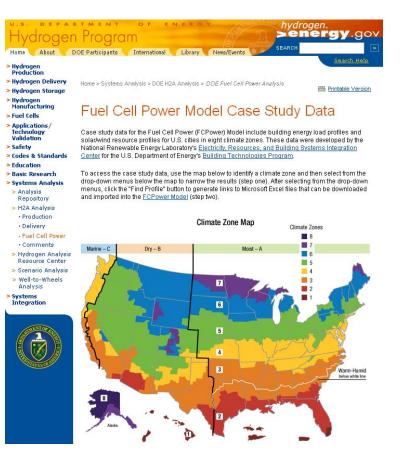
- Calculate cost without IRR
- Simple payback period calculation
- Solve for a different variable

```
Costs have already
been gathered &
energy analysis is
done – now what?
```

- Enter expected revenue and solve for IRR
- Enter expected revenue and IRR; solve for NPV of after tax cash flow
- Calculate total lifecycle cost
- Calculate benefit-to-cost ratio [PV (all benefits)
 PV (all costs)]
- Calculate savings-to-investment ratio [PV (net savings) ÷ PV (principle investment costs)]

Under

Construction

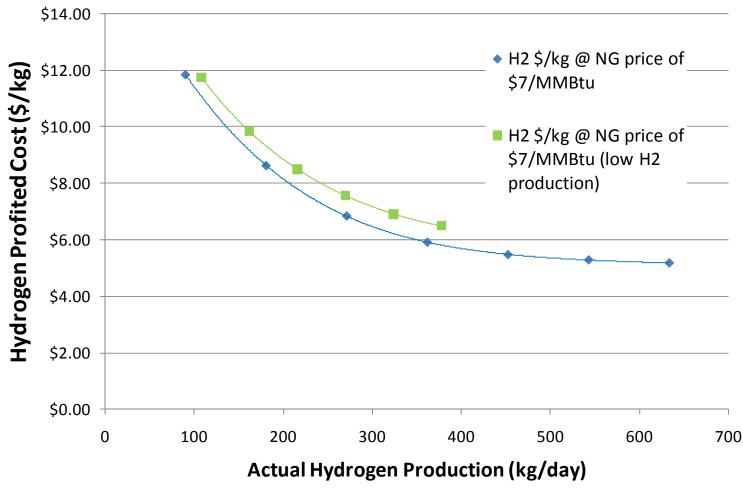

Technical Accomplishments – FCPower Model Public Outreach

Version 1.1 Published

- Molten Carbonate Fuel Cell and Phosphoric Acid Fuel Cell models
- Users guide
 - ➤ "How to" guide
 - Fuel cell performance models detailed
 - Case study descriptions

Presentations, webinars, one-onone guidance

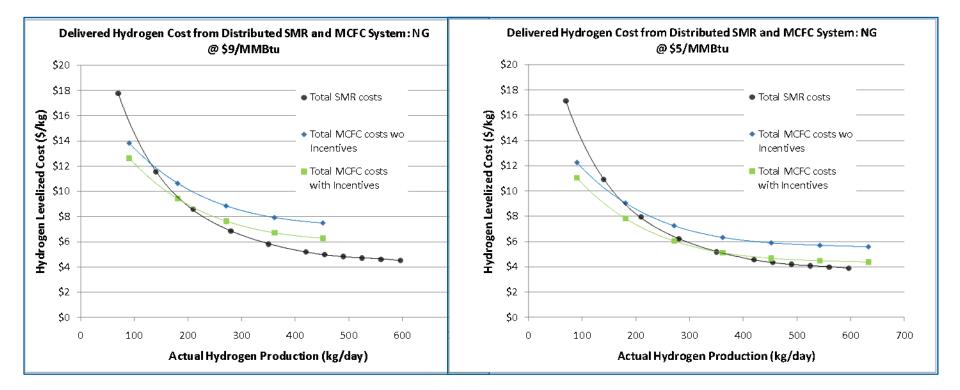
- Training and webinars for first users
- Electric Utility Consultants, Inc. (EUCI) webinar
- Market Transformation analysis were completed for several commercial and government entities


Technical Accomplishments – Support for Real World & Theoretical Applications

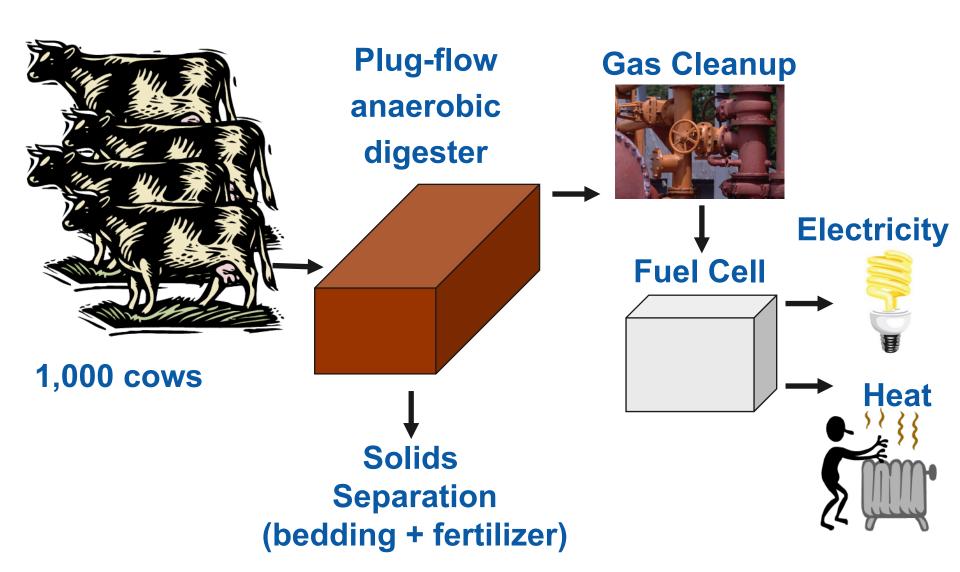
The FCPower model has been used to support a wide range of actual and proposed fuel cell installations, as well as theoretical research projects.

- NREL campus
- NASA AMES Research Center
- Los Alamitos Military base
- USPS Distribution Facility San Francisco
- MSRI
- Sandia / LLNL campus
- Three stores from a large grocery chain
- Five large food processing facilities
- DOE generic scenario studies
- Spatial model development for deployment (SERA)
- Biogas case studies

Technical Accomplishments – Effect of Additional Fuel for CHHP System Hydrogen Overproduction


Use of additional fuel to boost hydrogen production reduces hydrogen cost

Source: FCPower Model, molten carbonate fuel cell, version 1.1


Technical Accomplishment - Comparison of Fuel Cell CHHP and SMR Hydrogen Production Strategies

Hydrogen production from the fuel cell CHHP system is less expensive than SMR for small-scale systems.

Source: FCPower Model, molten carbonate fuel cell, version 1.1 and Current Forecourt Hydrogen Production from Natural Gas (1,500 kg per day) version 2.1.2

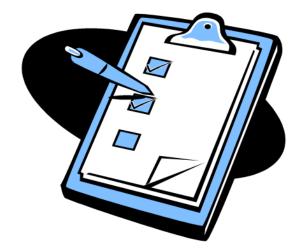
Technical Accomplishments – Example CHP Case; Dairy Farm Digester Gas

Technical Accomplishments – Dairy CHP Case – Data Gathering

Capital cost, O&M, Life, Performance

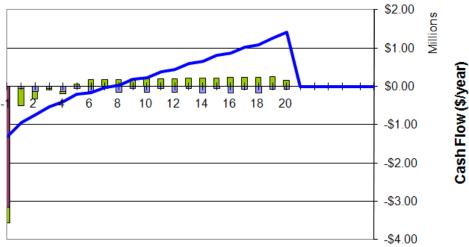
- Digester
- Gas cleanup
- Fuel cell system

Incentives


- Federal incentives
- State incentives

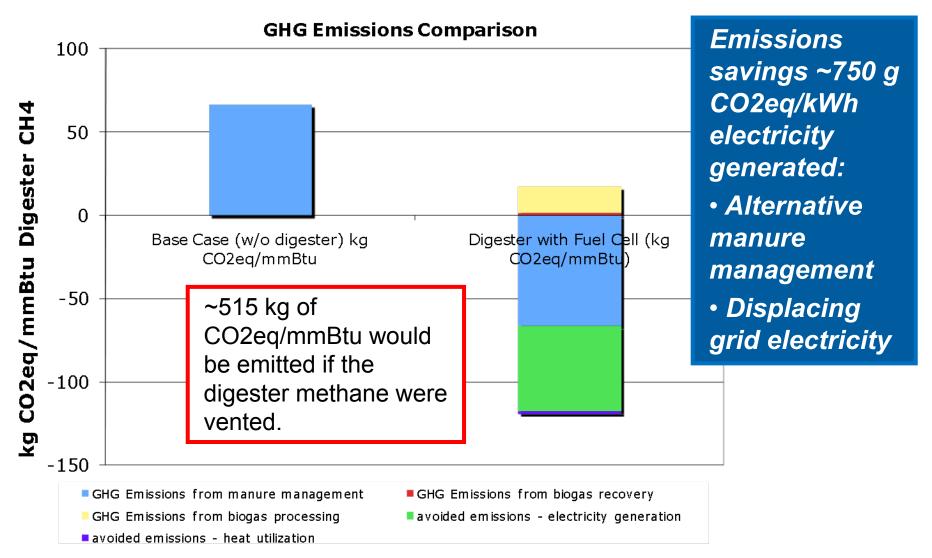
On-site energy demands


- Electricity hourly
- Heat hourly (including digester)


Energy costs

- Electricity ¢/kWh
- Heat \$/MMBTU

Technical Accomplishments – Dairy Case Results



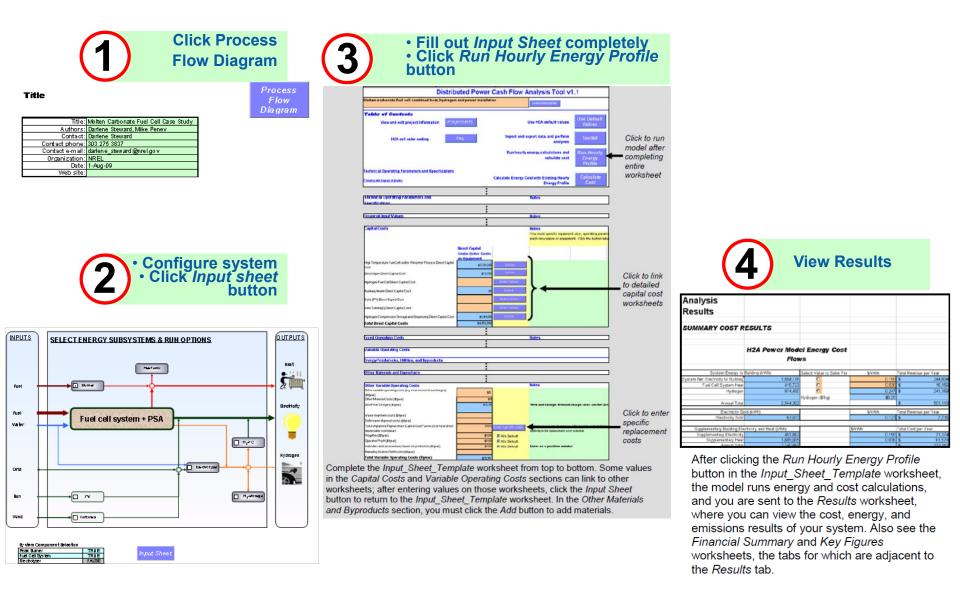
Year of Operation	01.00	
CHHP System Annualized Costs]
Annualized costs		
Capital costs	\$92,806	j
Decommissioning costs	\$1,176	i l
Fixed O&M	\$14,422)
Feedstock costs	\$0)
Other raw material costs	\$0)
Byproduct credits	-\$43,590)
Other variable costs	\$8	5
Supplementary electricity	\$2,702	2
Supplementary heat	\$0)
Total	\$67,525	j.

Digester/fuel cell system would break even after ~7 years and give an 8.5% IRR assuming equivalent value for grid electricity and fuel cell electricity (~14¢/kWh)

Technical Accomplishments – Emissions Projections

Data Source: CARB, *Detailed California-Modified GREET Pathway for Liquefied Natural Gas (NG) from Dairy Digester BioGas,* CARB Stationary Source Division, Version 2.0, September 23, 2009.

- The business case tab will be modified and enhanced as experience is gained from the business community.
- Additional specific case studies will be developed. When available, data from actual fuel cell installations will be used for comparison.
- The model will be used by NREL and other researchers to evaluate early transition scenarios and evaluate the potential impact on electricity systems and greenhouse gas emissions.
- SOFC fuel cells & residential sized systems will be added.
- The model will be enhanced in response to requests and needs identified through its use.
- The model will be integrated with the MSM and SERA models.


Summary

Relevance	 Model links distributed power and production of hydrogen for vehicle fuel
	• H2A-based discounted cash flow model dovetails with other DOE tools (H2A, HDSAM, MSM, HyDRA, SERA)
Approach	 Application combines fuel cell performance model with established cash flow analysis methodology
	 Excel-based tool is transparent and adaptable
Accomplishments	 Version 1.1 published Presentations, webinars & one-on-one assistance for users Custom analyses Research, collaboration, & planning for version 1.2
Collaborations	NREL H2 analysis team, business development & financial experts
	 Business research subcontractor
Proposed Future Work	Addition of SOFC fuel cell
	 Addition of "business case" tab

Thank You

Contact Information: Darlene.steward@nrel.gov Michael.penev@nrel.gov

Technical Approach – Excel Based Tool is Transparent and Easy to Use

Technical Accomplishments - Objective and Modeling Strategy for CHHP SMR Comparison

- The purpose of the analysis is to compare hydrogen production costs for stand-alone SMR station and a MCFC CHHP application
 - The SMR forecourt station was scaled to near 600 kg/day actual hydrogen production capacity to match maximum hydrogen output from 1.4MW(electric) MCFC operating at 95% utilization
 - Hydrogen production is reduced below 600 kg/day by curtailing operation of the reformer.
 - To model lower hydrogen production from the fuel cell, the fuel cell was scaled from 1.4 MW to 200kW maximum electrical output. This strategy is based on the assumption that the fuel cell size will be determined by the electricity demand and that the hydrogen purification equipment is integrated with the fuel cell and operates whenever the fuel cell is operating.

Technical Accomplishments - MCFC Hydrogen <u>Production Cost (Varying Fuel Cell Size) - Assumptions</u>

•Total storage volume set at 1,800 kg H2, but costs for CSD in FCPower model = 0 (cost correlation from SMR used for CSD costs in this analysis)

- •AC demand (building + auxiliaries) at 95% fuel cell utilization
- •Heat demand set at 100% of FC output
- •FC electricity price set at grid price
- •FC heat price set at NG price and assuming 80% efficient device
- •For cases with incentives, federal incentive only is used
- •Fuel cell uninstalled cost = \$2,500/kW for all sizes of fuel cell
- •Hydrogen purification equipment (PSA, PSA compressor, shift reactor, auxiliaries) scaled with hydrogen production rate using FCPower model equations.
- Replacement of fuel cell stack at 30% of FC uninstalled cost every 5 years (distributed annually)
 PSA compressor replaced at 10 years
- •Shift catalyst replaced every 5 years at 15% of shift reactor uninstalled cost.

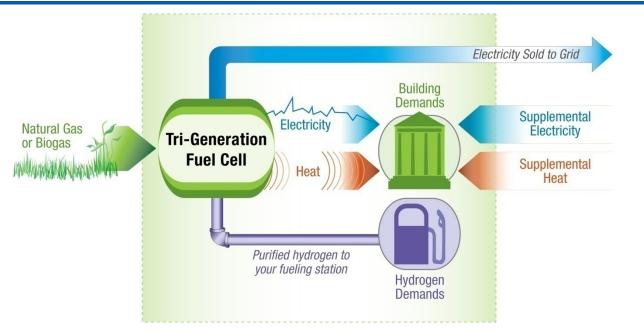
Indirect capital costs set to the same percentages as forecourt SMR (assumed same level of maturity would result in comparable costs for items such as engineering and one-time permitting)
Unplanned replacement cost factor = 0 (match SMR)

Technical Accomplishments – Dairy Case Energy & Material Values

	Units	Value
Methane production	Btu CH4/day/ cow (kWh CH4/day/cow)	45,218 (13.25)
Electricity production (assuming 45% average electrical efficiency for fuel cell)	kWh/day/cow	~6
Usable heat production (assuming 75% total efficiency for fuel cell)	kWh/day/cow	~4
Finished compost	Cubic yards/year/ cow	3.32
Electricity required for digester operation	kWh/cow/day	~1
Heat required for operation of chillers (for milk) and heating of the digester	kWh/cow/day	~1*
*0.014 tons chilling per cow per day per hour of milking		

Sources: Martin, John H. Jr. *A Comparison of Dairy Cattle Manure Management With and Without Anaerobic Digestion and Biogas Utilization*, EPA AgSTAR Program, June 2004. EPA AgSTAR Handbook, Second Edition.

Technical Accomplishments – Dairy Case Cost Values


	Units	Value for 1,000 cow farm
Digester system installed cost	\$K = [563*(number of cows) + 678,064]/10 ³	1,170
Post-digestion solids separation system	% of total project capital cost (\$K)	6.9 (98)
Hydrogen sulfide removal	% of total project capital cost (\$K)	4.5* (64)
Utility hookup	% of total project capital cost (\$K)	7.9 (112)
MCFC uninstalled cost	\$/kW (\$K), 300 kW system**	2,500 (750)
Federal tax incentive	\$K	324
CA SGIP using renewable fuel	\$K, \$4.50/W for FC > 30kW using renewable fuel	1,350

*High end of cost range assumed for fuel cell purity requirements.

** 250 kW system would be required for 6kWh/day/cow average production.

Sources: Martin, John H. Jr. *A Comparison of Dairy Cattle Manure Management With and Without Anaerobic Digestion and Biogas Utilization*, EPA AgSTAR Program, June 2004. EPA AgSTAR Handbook, Second Edition.

FCPower Model Website

http://www.hydrogen.energy.gov/fc_power_analysis.html

1. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED.

2. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES.