Advanced Direct Methanol Fuel Cell for Mobile Computing

University of North Florida

Jim Fletcher, Ph.D. University of North Florida June 10, 2010

> Project ID # ARRAH2004

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: January 1, 2010
- End date: December 31, 2011
- Percent complete: 16%

Barriers

Characteristic	Requirement
Specific Power	100 W/kg
Cost	<\$3/watt
Lifetime	5000 hours

Budget

- Total project budget \$3,054,464
 - DOE share \$2,443,441
 - Contractor share \$611,023
- Funding for FY10 \$3,054,464

Partners

University of Florida

Relevance: Objective

- The project objective is to develop a DMFC power supply for mobile computing using the novel passive water recycling technology acquired by UNF from PolyFuel, Inc., which enables significant simplification of DMFC systems.
 - The objective of the 2010 effort to date is to define the system concept and develop the required design requirements (system, sub-system, and component) in order to achieve the 2010 Technical Targets.
 - Initial component development effort, based on the CDRs, is nearly completed

Relevance: Conventional DMFC System

aid the electrochemical process

Relevance: UNF's Simplified DMFC System

Relevance: Impact

Incorporating the novel passive water recovery technology results in significant reduction in the number of components

Characteristic	Units	UNF 15 W DP3 2008 Status	DOE 2010 Target	UNF Proposed 20W System Design
Specific Power ^a	W / kg	35	100	54
Power Density ^a	W / L	48	100	63
Energy Density	W-hr / L	250 (1 x 100ml) ^b 396 (1 x 200ml) ^b	1000	198 (1 x 100ml) 313 (1 x 200ml) 507 (3 x 200 ml)
	W-hr/kg	155 (1 x 100ml) ^b 247 (1 x 200ml) ^b	N/A	180 (1 x 100 ml) 302 (1 x 200 ml) 532 (3 x 200 ml)
Lifetime ^c	Operating Hours	1,000 hrs in single cell	5,000	2,500 Integrated System
Cost	\$ / Watt	11 (est. in volume)	<3	< 10 (est. in volume)
^a B	eginning of life, 30	°C, sea level,50% R.H., excludi	ng hybrid battery, pow	er module alone

^b Normalized from DP3 data from 150 ml cartridge to either 100ml or 200ml for comparison purposes

^c Lifetime measured to 80% of rated power

Marked improvement on the road towards commercialization.

Approach: Project Integration

- This project is focused on the balance of plant (pumps, blowers, etc.) development and overall system integration
 - This effort is highly integrated with the UNF-led Topic 5A: New MEA Materials for Improved DMFC Performance, Durability, and Cost project (DOE funded) which focuses on optimizing the passive water recovery MEA
 - The passive water recovery MEA performance will be improved
 - As part of the Topic 5A program, industry partner Johnson Matthey will apply commercial processes to the MEA production
 - Critical to achieving cost, robustness, and lifetime goals for the DMFC power supply

Integrating the commercially produced MEA into the improved balance of plant is an important step towards commercialization.

Approach: Milestones

10% Complete

10% Complete

25% Complete

15% Complete

25% Complete

CDRs Revised Component DFMEAs Key Subsystems – Prototypes

Component Engineering

Shell Body and Interface Prototypes

Fuel Cartridge Prototype

<u>Component/Subassembly Testing</u>
 Component Performance & Durability
 Integrated Subsystem Testing

>System Engineering

Concept DesignDFMEA, DFMA of System

- Brassboard Assembly & Testing
- System Assembly & Testing

>Control System Development

- Rest /Rejuvenation Protocol Optimization
- Start-up & Shut-down Protocol
- Operating Protocol Tuning Revised System

>System Validation Testing

- Test Plan Released
- Operating and Storage Durability Testing
- Ex-Situ System Testing
- In-Situ System Testing
- Program Management
 - Quarterly & Annual Report
 - Go /No-Go Decision
 - Specific Power: 40 W/kg
 - Power Density: 55 W/l
 - Energy Density: 575 W·hr/l
 - (3 x 200 mL cartridges)

The project is on schedule.

Previous Accomplishments: Existing DP3

Fuel cartridge and power section

DP3 System with comparable battery energy

Technical Accomplishments: Component Test Stands

Test stands will be used for each component to insure the component design requirements are met

Methanol Sensor Test Stand: Used to measure the accuracy, transient response, and robustness of various methanol concentration sensor technologies

Cooling Fan Test Stand: Used to measure the performance and efficiency of small-scale motor-blower combinations

Accomplishments: Design Requirements

OVERVIEW								
System Requirements	0.0						CDR	
Power Section Requirements						CDR		
Fuel Cell Stack					CDR			
MEA								
Bipolar plate								
Stack ancillaries								
Air Management					CDR			
Thermal				S				
Noise / filtration				<u>S</u>				
Fuel Subsystem					CDR			
Recirculation Pump				ງສ				
Gas-Liquid Separator								
Reservoir isolation system								
Methanol conc. Sensing								
Fuel feed subystem		•			CDR			
Feed pump, isolation valve								
Fluid & mechanical interface			•					
Fuel Cartridge (Energy Storage)						CDR		
Fluid containment								
Mechanical								

CDRs are 75% complete at time of submission for merit review

Robust engineering design and development process.

Accomplishments: Fan Test Results

Fan	Peak Efficiency
Adda AD4505HX-K90	5.2
Sunon GB0545AFV1-8	6.0
OLC CFR3B5H	2.0
Sunon KDE1204PKVX	4.3
Y.S.Tech YW0401000- 5BH	3.0

A dual fan configuration meets the design requirements.

Accomplishments: Fan Test Results

Component	Power Budget (mW)
Methanol Injection Pump	50
Fuel Supply Solenoid Valve	100
Anode Recirculation Pump	1000
Cooling/Oxidant Fans	2000
Methanol Sensor	200

Testing showed motor-fan assembly efficiency typically 2-6%. Small motor dynamometer was developed to separate motor and fan efficiencies

Important to minimize the parasitic load to meet efficiency and run-time goals.

Methanol Concentration Sensor Testing

Siargo FSC-2000 and ISSYS sensors.

Siargo FSC-2000 MEMS Sensor

(Thermal Conductivity \rightarrow Concentration)

Siargo FSC-2000 susceptible to stress cracking due to thin sensor membrane

ISSYS FC6 MEMS Sensor

(Density \rightarrow Concentration)

ISSYS FC6 sensitive to mechanical shock and accuracy drift.

No current methanol concentration sensor meets the CDR. Other sensing technologies must be investigated (Viscosity, Crossover CO₂, Acoustic Wave, etc.)

Hydrogen Safety Plan

•All laboratories are outfitted with gas detection systems to alarm researchers in the event of a hydrogen leak.

•The hydrogen safety plan has been submitted and is under review.

Hydrogen Sensor Probe: The small hydrogen detector is installed at several remote locations providing gas detection at levels greater than 100 ppm.

KnowzNet Gas Detection System: The 8 channel gas detection system works in conjunction with the hydrogen sensor probes in order to provide gas monitoring and alerts at various locations.

Collaborations

University of Florida (Academic)

- Dr. Bill Lear leads the effort to develop critical components including the fuel pump, the recirculation pump, and the CO₂ removal membrane
- Dr. Oscar Crissale leads the effort to develop the overall control strategy
- The DOE funded project (UNF Prime) New MEA Materials for Improved DMFC Performance, Durability, and Cost includes the following collaborators:
 - University of Florida (Academic): Focus on manufacturability and advanced catalysis
 - Johnson Matthey (Industry): Integration of commercial processes into the MEA manufacturing
 - Northeastern University (Academic): Advanced catalysis focused on ultra-stable ruthenium catalyst

The University of North Florida (Prime) and the University of Florida also collaborate on a U.S. Army CERDEC funded project to develop a militarized version of the DMFC laptop power supply

Proposed Future Work

Remaining FY2010:

- Complete design requirements and DFMEAs (UNF)
- Complete component development (UNF, UF)
- Brassboard (unpackaged) system testing (UNF)
- KEY Milestone: Demonstrate component performance meets requirements
- FY2011:
 - Complete development of advanced control strategies (UF)
 - Integrate components and sub-systems into packaged unit (UNF)
 - Extensive system testing including performance, robustness, and lifetime (UNF, UF)
 - KEY Milestone: Compare system attributes (power density, expected lifetime, etc.) versus DOE requirements.

Project Summary

- Project Relevance: The novel passive water recovery MEA technology allows for simplified balance-of-plant which results in a DMFC power supply approaching the DOE 2010 Technical targets
- Approach: Cascade-down design requirements to each component resulting in a robust design. Integrate the balance-of-plant with the optimized passive water recovery MEA
- Technical Accomplishments: Design requirements completed and initial component development underway
- **Collaborations:** Technical expertise at UF focused on component development and robust control system.
- Proposed Future Work: Complete component development in 2010. System integration and testing (including advanced MEA) in 2011

