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Overview

Timeline
 Start date: Oct 2003
 End date:  Open
 Percent complete: NA

Barriers
B. Cost
C. Performance
E. System Thermal and Water

Management
F. Air Management
J. Startup and Shut-down Time, 

Energy/Transient Operation

Budget
 FY10 funding: $650K (+$300K)

DOE share:      100%
 FY09 funding: $600K (+$300K)

Partners/Interactions
 Honeywell CEM+TWM projects
 DTI, TIAX
 3M, Emprise, PermaPure
 ISO-TC192 WG12, HNEI,

JARI, LANL
 IEA Annexes 17 and 20
 FreedomCAR fuel cell tech team

 This project addresses system, stack and air management targets for 
efficiency, power density, specific power, transient response time, cold 
start-up time, start up and shut down energy
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Objectives

Develop a validated system model and use it to assess 
design-point, part-load and dynamic performance of 
automotive and stationary fuel cell systems.
 Support DOE in setting technical targets and directing

component development
 Establish metrics for gauging progress of R&D projects
 Provide data and specifications to DOE projects on 

high-volume manufacturing cost estimation 
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Approach

Develop, document & make available versatile system 
design and analysis tools.
 GCtool: Stand-alone code on PC platform
 GCtool-PSAT: Drive-cycle analysis of hybrid fuel cell

vehicles

Validate the models against data obtained in laboratory and 
at Argonne’s Fuel Cell Test Facility.
 Collaborate with external organizations

Apply models to issues of current interest.
 Work with FreedomCAR Technical Teams 
 Work with DOE contractors as requested by DOE
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Collaborations

Air Management Honeywell Turbo Technologies
Stack 3M, Nuvera
Water Management Honeywell Aerospace, Emprise, PermaPure
Thermal Management Honeywell Thermal Systems
Fuel Economy ANL (PSAT)
H2 Impurities HNEI, JARI, LANL, ISO-TC-192 WG
System Cost DTI, TIAX
Dissemination IEA Annex 22 and 25

– Argonne develops the fuel cell system configuration, determines 
performance, identifies and sizes components, and provides this 
information to TIAX for high-volume manufacturing cost estimation
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Technical Accomplishments
1. System analysis to update the status of technology
 Stack: Determined the performance of NSTFC stacks with 0.15 

mg/cm2 Pt loading and 20-µm membrane
 Air Management: Evaluated the performance of Honeywell’s 

compressor-expander-motor module for 1.5-atm operation
 Fuel Management: Evaluated the performance of parallel ejector-

pump hybrids
 Water Management: Constructed performance maps for planar 

membrane humidifiers
 Thermal Management: Collaborated with Honeywell to evaluate 

performance of microchannel automotive radiators
 Drive Cycle Simulations: GCtool-PSAT simulations for fuel economy 

of hybrid FCEVs
 Cost: Assisting TIAX in projecting cost of Argonne FCS-2010 at high 

volume manufacturing
2. Hydrogen impurity effects (Backup Slides)
 Conducting dynamic simulations to projected combined effect of H2

impurities at ISO specs
 Providing modeling support to ISO-TC192 WG-12 efforts
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Argonne 2010 FCS Configuration

2010 FCS
MEA
- 3M NSTFC MEA
- 20-µm 3M membrane
- 0.05(a)/0.1(c) mg/cm2 Pt
- Metal bipolar plates

AMS
- Honeywell CEMM
- Air-cooled motor/AFB

WMS
- Cathode MH with precooler

TMS
- Advanced 40-fpi

microchannel fins

FMS
- Parallel ejector-pump hybrid

 S1 – Pressurized FCS, 2.5 atm stack inlet pressure at rated power
 S2 – Low-pressure FCS, 1.5 atm stack inlet pressure at rated power
 S3 – S2 without cathode humidifier, HT coolant in pre-cooler
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Air Management System 
 Determined performance of Honeywell’s compressor-expander-

motor module (CEMM) originally designed for 2.5-atm peak P (S1)
 Comparable component efficiencies for S1 and S2 which may 

improve with redesign for higher rpm

 Mixed axial flow 
compressor

 Variable nozzle 
turbine (VNT)

 3-phase brushless 
DC motor, liquid and 
air cooled

 Motor controller, 
liquid cooled

 Air foil bearing (AFB)
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Performance of Integrated CEM Module 
 Maximum turndown may be limited by compressor surge for shaft 

speeds less than 45 krpm
 At rated power, the CEMM consumes ~10 kWe in S1, <6 kWe in S2
 CEMM min. power between 270-400 We, determined by AFB durability
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Reference Stack with 3M’s NSTF Catalysts
 3M’s single cell data with 0.1(a)/0.15(c) mg/cm2 Pt, ternary PtCoMn 

catalyst, and 35-µm 850 EW membrane
 3M’s single cell data with 0.05(a)/0.1(c) mg/cm2 Pt, ternary PtCoMn 

catalyst, and 20-µm 850 EW membrane
 ECSA, specific activity, short and crossover currents and HFR data 

from CV, EIS and H2/air cells at 0.9 V, 70-120oC, 20-100% RH
 Determined optimum combination of stack temperature and inlet RH 

as a function of pressure, stoichiometry and MEA parameters

FCS S1 S2 S3

Stack P, atm 2.5 1.5 1.5

Stack T, °C 85 75 65

Dew Point T 
(c), °C 64 61 22

Dew Point T 
(a), °C 59 53 22
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Stack Performance – Effect of Pt Loading
 Reference 2009 S1 system: 0.25 mg-Pt/cm2, 35-µm membrane
 Reference 2010 S1 system: 0.15 mg-Pt/cm2, 20-µm membrane
 30-45% projected reduction in Pt content because of lower Pt loading 

and thinner membrane, 0.12-0.30 g-Pt/kWe(net)
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Stack Performance – Effect of Operating Pressure
 S1 has higher power density and lower Pt content even though cell V 

has to be 25-35 mV higher to compensate for larger parasitic power
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Fuel Management System
 Parallel ejector-pump hybrid 
 Ejector performance

– Motive (p) gas: cH2, 15-atm maximum P, MW=2
– Suction (s) gas: H2 with water, 1-1.5 atm, 75oC, MW=3-7
– Lift pressure: <3 psi; Recycle ratio: ms/mp = 2-5 
– Blower flow rate(%): 100-Entrainment(%) 
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Alternate Arrangements
 A blower is always needed if the FCS has a turndown >3 with single 

ejector, >4 with variable geometry ejector, and > 5 with dual ejectors

Dual Ejectors + Blower Variable Geometry Ejector + Blower 

Blower None Single Variable 
Geometry Dual

Flow Rate L/s 20 5.6 4.5 3.1
Pressure Head psi 3 0.8 0.65 0.4
Power W 400 35 25 10

Ejector Arrangement
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Water Management System
 Analyzed Honeywell and PermaPure data for full-scale (FS), half-scale 

(HS) and 1/10th sub-scale (SS) membrane humidifiers 
 Permeance (κm) for the units (not local values) can be represented in 

terms of the dry-air outlet RH. 
– κm defined similarly as LMTD for heat transfer
– κm also depends on temperatures

 Effectiveness (εm) can be represented in terms of NMTU (number of 
mass transfer units)
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Water Mass Transfer Flux
 Model results for mass transfer from saturated wet stream 
 Optimum dry-air inlet temperature (Tm) for maximum flux 

– Flux decreases for Td > Tm because of low uptake (too dry)
– Flux decreases for Td < Tm as humidified air approaches saturation

 Flux is also a strong function of the membrane thickness, temperature 
of the wet air and operating pressures
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Thermal Management System
 Heat rejection more difficult in FCVs than ICEVs

– Higher efficiency, but similar or higher heat loads but smaller ∆T
– Additional FCS and electric drivetrain components requiring cooling 

to lower temperatures: stacked A/C condenser, LTR and HTR
– Heat rejection in FC powertrains is most challenging while driving at 

55 mph on 6.5% grade with 600 kg payload
– Allow stack temperature to rise when heat rejection is difficult
– Expander needed even in S2 and S3

Rated Power kWe 80 80 80 80 80 80 80 80 80
System Efficiency % 50 45 40 50 45 40 50 45 40
Stack Pressure atm 2.5 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5
Stack Temperature oC 85 85 85 75 75 75 65 65 65
Heat Rejection
Demand Power kWe 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5
Cell Voltage mV 741 681 634 732 682 649 734 688 657
Stack Pressure atm 2.4 2.4 2.3 2.1 2.1 2 2.1 2.1 2
Stack Temperature oC 95 95 92 95 95 92 80 80 75
HT Radiator Heat Load kW 49.5 59.5 68.3 49.3 57.6 63.5 49.4 56.7 62.2
LT Radiator Heat Load kW 16.2 16.5 16.2 13.6 13.8 13.5 13.3 13.5 13.3

S1 S2 S3
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Microchannel Radiator
 Derived f and j factors from Honeywell data for 9”x9”x1.3” subscale 

and 27.6”x17.7”x1.3” full-scale radiators 
– 18 and 24 fpi louver and 40 and 50 fpi microchannel fins

 FCS radiator can be more compact with 40-fpi microchannel than 
with standard automotive18-fpi louver fins

 FC powertrains will likely be derated at Ta > 40oC since the fan 
power doubles for every 5oC increase in ambient temperature (Ta)
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Heat Rejection vs. Stack Efficiency at Rated Power
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System Performance - Summary
Lowering rated-power efficiency
from 50% to 40% decreases
 peak efficiency by <1%
 fuel economy by 4% in battery-

charging mode (BCM) & 7% in 
load-following mode (LFM)

 and system Pt content by 50%
No. of start-stops on UDDS: 58 in
BCM, 4 in LFM2

PSAT drive-cycle simulation results for a mid-size hybrid vehicle
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Future Work
1. Systems Analysis
 Support DOE/FreedomCAR development effort at system, 

component, and phenomenological levels
 Collaborate with 3M to develop durability models for NSTFC 

electrode structures
 Continue cooperation with Honeywell and others to validate air, fuel, 

thermal, and water management models
 System optimization for cost, performance, and durability
 Drive cycle simulations for durability enhancement
 Alternate membrane, catalyst structures, and system configurations
 Support DTI and TIAX in high-volume manufacturing cost projections 
2. Hydrogen Quality
 Validate impurity models against U.S. and JARI data
 Project effects of proposed standards on stack performance 
 Provide modeling support to ISO-TC192 WG-12 and the Codes and 

Standards Technical Team
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Appendix
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1. SMR-PSA may be the pathway for producing H2 in the early 
stages of hydrogen economy 

 CO and N2 levels determine the H2 recovery from PSA and 
influence the cost of producing H2

 Of the two impurities, CO degrades the cell performance more 
but accumulation of N2 accumulation can significantly dilute the 
H2 concentration

 Our simulations show that N2 crossover from air is the main 
source of N2 buildup in the anode recycle stream and determines 
the purge schedule

2. H2S and NH3 are extremely harmful to PEFC efficiency but are 
easily removed in PSA beds

 Dynamic simulations show that NH3 cannot accumulate in the 
anode recycle stream

Dynamic Behavior of Fuel Hydrogen Impurities in 
Polymer Electrolyte Fuel Cells
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Hydrogen Purification Drivers (PSA)
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CO/CO2 Poisoning Model

 Hydrogen Oxidation Reaction

– H2 + 2M ↔ 2M-H (Dissociative Adsorption)

– M-H → M + H+ + e- (Electrochemical Oxidation)

 CO Poisoning of Pt

– CO + M ↔ M-CO (Associative Adsorption on Linear Sites)

– CO2 + 2M-H → M + M-CO + H2O (Reverse Water-Gas Shift)

– M-CO + H2O → M + CO2 + 2H+ + 2e- (Electrochemical Oxidation)

 Reactions with Oxygen 

– M-CO + ½ O2 → M + CO2 (CO Oxidation)

– 2M-H + ½ O2 → 2M + H2O (H2 Oxidation)
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H2S Poisoning Model

 Sequential Sorption of H2S on Pt

1. nM + H2S ↔ Mn-H2S (Associative chemisorption)

2. Mn-H2S ↔ MnS + 2H+ + 2e- (Electrochemical reaction)

3. MnS + 3H2O → nM + SO3 + 6H+ + 6e- (Electrochemical oxidation)

 Multi-site sorption of H2S, n is a function of total sulfur coverage (θS)

– n →1 as θS → 1, n → N as θS → 0

 Near OC, MnS can re-convert to Mn-H2S (E2 = 0.14 V), and H2S can 
desorb for partial recovery

 At a high anode overpotential (E3 = 0.89 V), MnS can oxidize to SO3, 
SO3 assumed completely soluble in water and removed from the 
system
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Experimental Observations
 Reversible at low concentrations but may be irreversible at high 

concentrations (Uribe 2002)
 CV traces suggest that NH3 is not significantly adsorbed on the 

electrocatalyst (Uribe 2002 & Soto 2003).
 AC impedance spectroscopy data indicate that increased 

membrane resistance cannot account for the observed 
overpotentials due to NH3 impurity (Soto 2003).

Model
 Transient stack model with steady-state option
 NH3 uptake in ionomer modeled as a reversible absorption-

desorption reaction
 Same approach for NH3 uptake in membrane except it is exposed 

to both anode and cathode streams
 Effect of NH4

+ on conductivity from experimental data
 Postulated effect of NH4

+ on ORR kinetics

NH3 Poisoning Model
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HCHO/HCOOH/C7H8 Poisoning Model

 Hydrogen Oxidation Reaction

– H2 + 2M ↔ 2M-H (Dissociative Adsorption)

– M-H → M + H+ + e- (Electrochemical Oxidation)

 Poisoning of Pt

– HCHO + M → M-CO + 2H++ 2e- (Dissociative Adsorption)

– HCOOH + M → M-CO + H2O (Dissociative Adsorption)

– C7H8 + M ↔ M-C7H8 (Associative Adsorption)

 Reaction with Hydrogen 

– C7H8 + 6M-H → 6M + C7H14 (Hydrogenation to MCH)
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NH3 Impurity Model Development (JARI Data)
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HCHO/HCOOH Impurity Model Development:
JARI Data
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 Toluene alone: Small ∆V, significant conversion to methyl-cyclohexane
 Toluene + CO: Larger ∆V, insignificant hydrogenation

Analysis of HNEI Data: Toluene
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Effect of Inerts (N2, He, CH4)
 Giner data for N2 permeance as a function of T and membrane 

water content (fv)
– N2 crossover from cathode air may potentially exceed N2 in H2

 He permeance from JARI data: 2.4x10-13 mol/cm.s.kPa at 80oC, 
77oC dew point, 1.6 higher than H2 permeance

 CH4 and CO2 are relatively impermeable (HNEI, JARI)
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1. Pressurized stack 
 87 kWe at 1 A/cm2 with pure H2

 50% O2 & 70% per-pass H2 utilization
 N111 membrane, 0.2(c)/0.1(a) mg/cm2 Pt loading
 Stack pressure: 2.5/1.9/1.6 atm at 100/25/5% power
 Inlet RH: 60/80/90% at 100/25/5% power
2. Purge criteria
 Single purge (14 L) equivalent to 2 volumes of anode subsystem 

restores gas in anode channels to the H2 fuel specs 
3. Definitions
 Concentrations generally reported as max. values after 30-h 

exposure
 Stack efficiency defined as ratio of DC power produced to the LHV 

of H2 consumed (chemically and electrochemically) and purged 

Reference Conditions, Assumptions, Definitions
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Dynamic simulations of Impurity Effects
 Purge occurs whenever impurity concentration reaches 15%
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Purge Loss and Schedule

 At low power, purge interval determined primarily by N2 crossover
 At high power, buildup of fuel impurities also affects purge interval
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Dynamic Pt Coverage

 Steady-state coverage of CO & C7H8 functions of P & overpotentials
 No SS coverage for H2S which competes with CO & C7H8 for vacant sites
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Buildup of Impurities with Dynamic Purge: N2, He, CO, CO2
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Dynamic Buildup of NH3, H2S and HCHO
 No buildup of NH3, NH3 crossover increases with current density 
 H2S breakthrough at more than 20% power, >30 h exposure
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Dynamic Buildup of HCOOH and C7H8

 Slower dissociative adsorption of HCOOH than HCHO 
 Conversion of toluene to methyl-cyclohexane slows at higher power
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Simultaneous Effect of Impurities

 Losses defined with respect to cell voltage and stack efficiency for 
pure fuel hydrogen accounting for N2 crossover from cathode

 At <30% power, ∆V approaches zero but 0.35 percentage point 
reduction in stack efficiency due to buildup of impurities

 Slow increase in ∆V expected at longer exposure because of H2S 
uptake
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Effect of Anode Pt Loading

 Substantially higher ∆V and ∆η with 0.05 mg/cm2 Pt (a) for 
>50% stack power
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Effect of Stack Temperature

 70oC stack temperature, 1.5 bar inlet pressure at rated power
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Sensitivity Analysis
 Results for 100% stack power, ISO max impurity specs with one 

species at 2X and 0.5 X concentration
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Drive Cycle Simulations
 Multiple repeats of warm FUDS (1372 s) and FHDS (740 s) for 30 h
 Insignificant differences in VI curve for the last FUDS-FHDS cycle
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Summary and Conclusions
 N2 crossover from air is the main source of N2 buildup in the anode 

recycle stream and determines the purge schedule
 Dynamic simulations show that NH3 cannot accumulate in the anode 

recycle stream
– Significant crossover of NH3 to cathode air
– Cumulative degradation in performance due to H2S

 Cyclic buildup of formaldehyde, formic acid and methyl-cyclohexane
 Critical data needs

– CO/CO2: H2 pump data for independent verification of chemical 
vs. electrochemical CO oxidation

– NH3 crossover as function of current density, NH3 isotherms as 
functions of RH and T

– H2S: Isolation of anode vs. cathode overpotentials
– Effect of T on behavior of HCHO, HCOOH and C7H8
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