

Fuel Cells Systems Analysis

R. K. Ahluwalia, X. Wang, K. Tajiri and R. Kumar

2010 DOE Hydrogen Program Review Washington, DC June 8-11, 2010

Project ID: FC017

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start date: Oct 2003
- End date: Open
- Percent complete: NA

Barriers

- B. Cost
- C. Performance
- E. System Thermal and Water Management
- F. Air Management
- J. Startup and Shut-down Time, Energy/Transient Operation

Budget

- FY10 funding: \$650K (+\$300K)
 - DOE share: 100%
- FY09 funding: \$600K (+\$300K)

Partners/Interactions

- Honeywell CEM+TWM projects
- DTI, TIAX
- 3M, Emprise, PermaPure
- ISO-TC192 WG12, HNEI, JARI, LANL
- IEA Annexes 17 and 20
- FreedomCAR fuel cell tech team

This project addresses system, stack and air management targets for efficiency, power density, specific power, transient response time, cold start-up time, start up and shut down energy

Objectives

Develop a validated system model and use it to assess design-point, part-load and dynamic performance of automotive and stationary fuel cell systems.

- Support DOE in setting technical targets and directing component development
- Establish metrics for gauging progress of R&D projects
- Provide data and specifications to DOE projects on high-volume manufacturing cost estimation

Approach

Develop, document & make available versatile system design and analysis tools.

- GCtool: Stand-alone code on PC platform
- GCtool-PSAT: Drive-cycle analysis of hybrid fuel cell vehicles

Validate the models against data obtained in laboratory and at Argonne's Fuel Cell Test Facility.

Collaborate with external organizations

Apply models to issues of current interest.

- Work with FreedomCAR Technical Teams
- Work with DOE contractors as requested by DOE

Collaborations

Air Management	Honeywell Turbo Technologies
Stack	3M, Nuvera
Water Management	Honeywell Aerospace, Emprise, PermaPure
Thermal Management	Honeywell Thermal Systems
Fuel Economy	ANL (PSAT)
H ₂ Impurities	HNEI, JARI, LANL, ISO-TC-192 WG
System Cost	DTI, TIAX
Dissemination	IEA Annex 22 and 25

 Argonne develops the fuel cell system configuration, determines performance, identifies and sizes components, and provides this information to TIAX for high-volume manufacturing cost estimation

Technical Accomplishments

- 1. System analysis to update the status of technology
- Stack: Determined the performance of NSTFC stacks with 0.15 mg/cm² Pt loading and 20-μm membrane
- Air Management: Evaluated the performance of Honeywell's compressor-expander-motor module for 1.5-atm operation
- Fuel Management: Evaluated the performance of parallel ejectorpump hybrids
- Water Management: Constructed performance maps for planar membrane humidifiers
- Thermal Management: Collaborated with Honeywell to evaluate performance of microchannel automotive radiators
- Drive Cycle Simulations: GCtool-PSAT simulations for fuel economy of hybrid FCEVs
- Cost: Assisting TIAX in projecting cost of Argonne FCS-2010 at high volume manufacturing
- 2. Hydrogen impurity effects (Backup Slides)
- Conducting dynamic simulations to projected combined effect of H₂ impurities at ISO specs
 - Providing modeling support to ISO-TC192 WG-12 efforts

Argonne 2010 FCS Configuration

- S1 Pressurized FCS, 2.5 atm stack inlet pressure at rated power
- S2 Low-pressure FCS, 1.5 atm stack inlet pressure at rated power
- S3 S2 without cathode humidifier, HT coolant in pre-cooler

2010 FCS

- 3M NSTFC MEA
- 20-µm 3M membrane
- 0.05(a)/0.1(c) mg/cm² Pt
- Metal bipolar plates

AMS

- Honeywell CEMM
- Air-cooled motor/AFB

WMS

- Cathode MH with precooler

TMS

- Advanced 40-fpi microchannel fins

FMS

- Parallel ejector-pump hybrid

Air Management System

- Determined performance of Honeywell's compressor-expandermotor module (CEMM) originally designed for 2.5-atm peak P (S1)
- Comparable component efficiencies for S1 and S2 which may improve with redesign for higher rpm

- Mixed axial flow compressor
- Variable nozzle turbine (VNT)
 - 3-phase brushless DC motor, liquid and air cooled
- Motor controller, liquid cooled
- Air foil bearing (AFB)

Performance of Integrated CEM Module

- Maximum turndown may be limited by compressor surge for shaft speeds less than 45 krpm
- At rated power, the CEMM consumes ~10 kW_e in S1, <6 kW_e in S2
- CEMM min. power between 270-400 W_e, determined by AFB durability

9

Reference Stack with 3M's NSTF Catalysts

- 3M's single cell data with 0.1(a)/0.15(c) mg/cm² Pt, ternary PtCoMn catalyst, and 35-μm 850 EW membrane
- 3M's single cell data with 0.05(a)/0.1(c) mg/cm² Pt, ternary PtCoMn catalyst, and 20-μm 850 EW membrane
- ECSA, specific activity, short and crossover currents and HFR data from CV, EIS and H₂/air cells at 0.9 V, 70-120°C, 20-100% RH
- Determined optimum combination of stack temperature and inlet RH as a function of pressure, stoichiometry and MEA parameters

10

Stack Performance – Effect of Pt Loading

- Reference 2009 S1 system: 0.25 mg-Pt/cm², 35-μm membrane
- Reference 2010 S1 system: 0.15 mg-Pt/cm², 20-μm membrane
- 30-45% projected reduction in Pt content because of lower Pt loading and thinner membrane, 0.12-0.30 g-Pt/kW_e(net)

Stack Performance – Effect of Operating Pressure

 S1 has higher power density and lower Pt content even though cell V has to be 25-35 mV higher to compensate for larger parasitic power

Fuel Management System

- Parallel ejector-pump hybrid
- Ejector performance
 - Motive (p) gas: cH2, 15-atm maximum P, MW=2
 - Suction (s) gas: H_2 with water, 1-1.5 atm, 75°C, MW=3-7
 - Lift pressure: <3 psi; Recycle ratio: $m_s/m_p = 2-5$
 - Blower flow rate(%): 100-Entrainment(%)

Alternate Arrangements

 A blower is always needed if the FCS has a turndown >3 with single ejector, >4 with variable geometry ejector, and > 5 with dual ejectors

		Ejector Arrangement					
Blower		None	Single	Variable Geometry	Dual		
Flow Rate	L/s	20	5.6	4.5	3.1		
Pressure Head	psi	3	0.8	0.65	0.4		
Power	W	400	35	25	10		

Dual Ejectors + Blower

14

Water Management System

- Analyzed Honeywell and PermaPure data for full-scale (FS), half-scale (HS) and 1/10th sub-scale (SS) membrane humidifiers
- Permeance (κ_m) for the units (not local values) can be represented in terms of the dry-air outlet RH.
 - $-\kappa_m$ defined similarly as LMTD for heat transfer
 - $-\kappa_m$ also depends on temperatures
- Effectiveness (ε_m) can be represented in terms of NMTU (number of mass transfer units)

Water Mass Transfer Flux

- Model results for mass transfer from saturated wet stream
- Optimum dry-air inlet temperature (T_m) for maximum flux
 - Flux decreases for $T_d > T_m$ because of low uptake (too dry)
 - Flux decreases for $T_d < T_m$ as humidified air approaches saturation
- Flux is also a strong function of the membrane thickness, temperature of the wet_air and operating pressures

Thermal Management System

- Heat rejection more difficult in FCVs than ICEVs
 - Higher efficiency, but similar or higher heat loads but smaller ΔT
 - Additional FCS and electric drivetrain components requiring cooling to lower temperatures: stacked A/C condenser, LTR and HTR
 - Heat rejection in FC powertrains is most challenging while driving at 55 mph on 6.5% grade with 600 kg payload
 - Allow stack temperature to rise when heat rejection is difficult

—	Expand	ler n	eeded	even	in	S2	and	S 3
---	--------	-------	-------	------	----	----	-----	------------

		S1		S2			S3			
Rated Power	kWe	80	80	80	80	80	80	80	80	80
System Efficiency	%	50	45	40	50	45	40	50	45	40
Stack Pressure	atm	2.5	2.5	2.5	1.5	1.5	1.5	1.5	1.5	1.5
Stack Temperature	°C	85	85	85	75	75	75	65	65	65
Heat Rejection										
Demand Power	kWe	61.5	61.5	61.5	61.5	61.5	61.5	61.5	61.5	61.5
Cell Voltage	mV	741	681	634	732	682	649	734	688	657
Stack Pressure	atm	2.4	2.4	2.3	2.1	2.1	2	2.1	2.1	2
Stack Temperature	°C	95	95	92	95	95	92	80	80	75
HT Radiator Heat Load	kW	49.5	59.5	68.3	49.3	57.6	63.5	49.4	56.7	62.2
LT Radiator Heat Load	kW	16.2	16.5	16.2	13.6	13.8	13.5	13.3	13.5	13.3

Microchannel Radiator

- Derived f and j factors from Honeywell data for 9"x9"x1.3" subscale and 27.6"x17.7"x1.3" full-scale radiators
 - 18 and 24 fpi louver and 40 and 50 fpi microchannel fins
- FCS radiator can be more compact with 40-fpi microchannel than with standard automotive18-fpi louver fins
- FC powertrains will likely be derated at T_a > 40°C since the fan power doubles for every 5°C increase in ambient temperature (T_a)

Heat Rejection vs. Stack Efficiency at Rated Power

- At low stack temperatures, the minimum fan power increases nonlinearly with heat load (i.e., FCS efficiency at rated power)
- For given fan power, 40% FCS (S2) must be capable of operating at 5-10°C higher stack temperature than 50% FCS
- From the standpoint of heat rejection, 40% FCS may be acceptable if it can be operated at 95°C (S3 not OK)

System Performance - Summary

Lowering rated-power efficiency from 50% to 40% decreases

- peak efficiency by <1%
- fuel economy by 4% in batterycharging mode (BCM) & 7% in load-following mode (LFM)
- and system Pt content by 50% No. of start-stops on UDDS: 58 in BCM, 4 in LFM2

Future Work

- 1. Systems Analysis
- Support DOE/FreedomCAR development effort at system, component, and phenomenological levels
- Collaborate with 3M to develop durability models for NSTFC electrode structures
- Continue cooperation with Honeywell and others to validate air, fuel, thermal, and water management models
- System optimization for cost, performance, and durability
- Drive cycle simulations for durability enhancement
- Alternate membrane, catalyst structures, and system configurations
- Support DTI and TIAX in high-volume manufacturing cost projections
- 2. Hydrogen Quality
- Validate impurity models against U.S. and JARI data
- Project effects of proposed standards on stack performance
- Provide modeling support to ISO-TC192 WG-12 and the Codes and Standards Technical Team

Appendix

Dynamic Behavior of Fuel Hydrogen Impurities in Polymer Electrolyte Fuel Cells

- 1. SMR-PSA may be the pathway for producing H_2 in the early stages of hydrogen economy
- CO and N₂ levels determine the H₂ recovery from PSA and influence the cost of producing H₂
- Of the two impurities, CO degrades the cell performance more but accumulation of N₂ accumulation can significantly dilute the H₂ concentration
- Our simulations show that N₂ crossover from air is the main source of N₂ buildup in the anode recycle stream and determines the purge schedule
- 2. H_2S and NH_3 are extremely harmful to PEFC efficiency but are easily removed in PSA beds
- Dynamic simulations show that NH₃ cannot accumulate in the anode recycle stream

Hydrogen Purification Drivers (PSA)

Species	Adsorption Force	ISO TC 197 WG 12 (14687) Draft Spec	ATR Mol %	Purification Ratio for ATR	SMR Mol %	Purification Ratio for SMR	OVERALL EFFECT
Helium (He)	Zero	100 ppm (total inert)	500 ppm	5	500 ppm	5	NOT POSSIBLE
Hydrogen (H2)	Weak	99.99%	40-45%		75-80%		Impacts PSA recovery & Capital Cost
Oxygen (O2)		5 ppm	50 ppm	10	-	-	Impacts PSA recovery & Capital Cost
Argon (Ar)		100 ppm (total inert)	500 ppm	5	500 ppm	5	Impacts PSA recovery & Capital Cost
Nitrogen (N2)		100 ppm (total inert)	34-38%	3800	1000 ppm	10	Impacts PSA recovery & Capital Cost
Carbon Monoxide (CO)		0.2 ppm	0.1 -1 %	50000	0.1-4%	200000	Impacts PSA recovery & Capital Cost
Methane (CH4)		2 ppm (incl THC)	0.5 – 2%	10000	0.5 – 3%	15000	Impacts PSA recovery & Capital Cost
Carbon Dioxide (CO2)		2 ppm	15-17%	85000	15 -18%	90000	Relatively easier to remove
Total HC's	V	2 ppm (incl CH4)	0.1 %	500	0.5%	2500	Relatively easier to remove
Ammonia	Strong	0.1 ppm	Low ppm		Low ppm		Relatively easier to remove
Total Sulfur	Strong	0.004 ppm					Relatively easier to remove
Halogenates	Strong	0.05 ppm					Relatively easier to remove
Water (H2O)	Strong	5 ppm	Dew Point		Dew Point		Relatively easier to remove

DOE H2QWG Draft Roadmap. Courtesy, Bhaskar Balasubramanian (Chevron)

CO/CO₂ Poisoning Model

- Hydrogen Oxidation Reaction
 - − $H_2 + 2M \leftrightarrow 2M-H$
 - M-H \rightarrow M + H⁺ + e⁻
- CO Poisoning of Pt

- (Dissociative Adsorption)
- (Electrochemical Oxidation)
- $CO + M \leftrightarrow M$ -CO (Associative Adsorption on Linear Sites)
- $CO_2 + 2M-H \rightarrow M + M-CO + H_2O$ (Reverse Water-Gas Shift)
- M-CO + $H_2O \rightarrow M + CO_2 + 2H^+ + 2e^-$ (Electrochemical Oxidation)
- Reactions with Oxygen
 - $\text{M-CO} + \frac{1}{2} \text{O}_2 \rightarrow \text{M} + \text{CO}_2$
 - 2M-H + $\frac{1}{2}$ O₂ \rightarrow 2M + H₂O

- (CO Oxidation)
 - (H₂ Oxidation)

H₂S Poisoning Model

- Sequential Sorption of H₂S on Pt
 - 1. $nM + H_2S \leftrightarrow M_n H_2S$ (Associative chemisorption)
 - 2. M_n - H_2 S \leftrightarrow M_n S + 2H⁺ + 2e⁻ (Electrochemical reaction)
 - 3. $M_nS + 3H_2O \rightarrow nM + SO_3 + 6H^+ + 6e^-$ (Electrochemical oxidation)
- Multi-site sorption of H_2S , n is a function of total sulfur coverage (θ_S)
 - $n \rightarrow 1 \text{ as } \theta_S \rightarrow 1, n \rightarrow N \text{ as } \theta_S \rightarrow 0$
- Near OC, M_nS can re-convert to M_n-H₂S (E₂ = 0.14 V), and H₂S can desorb for partial recovery
- At a high anode overpotential (E₃ = 0.89 V), M_nS can oxidize to SO₃, SO₃ assumed completely soluble in water and removed from the system

NH₃ Poisoning Model

Experimental Observations

- Reversible at low concentrations but may be irreversible at high concentrations (Uribe 2002)
- CV traces suggest that NH₃ is not significantly adsorbed on the electrocatalyst (Uribe 2002 & Soto 2003).
- AC impedance spectroscopy data indicate that increased membrane resistance cannot account for the observed overpotentials due to NH₃ impurity (Soto 2003).

Model

- Transient stack model with steady-state option
- NH₃ uptake in ionomer modeled as a reversible absorptiondesorption reaction
- Same approach for NH₃ uptake in membrane except it is exposed to both anode and cathode streams
- Effect of NH₄⁺ on conductivity from experimental data
- Postulated effect of NH₄⁺ on ORR kinetics

HCHO/HCOOH/C7H8 Poisoning Model

- Hydrogen Oxidation Reaction
 - $H_2 + 2M \leftrightarrow 2M-H$
 - M-H \rightarrow M + H⁺ + e⁻
- Poisoning of Pt
 - HCHO + M \rightarrow M-CO + 2H⁺+ 2e⁻
 - HCOOH + M \rightarrow M-CO + H₂O
 - $C_7H_8 + M \leftrightarrow M-C_7H_8$
- Reaction with Hydrogen
 - $C_7H_8 + 6M-H \rightarrow 6M + C_7H_{14}$

- (Dissociative Adsorption)
- (Electrochemical Oxidation)
 - (Dissociative Adsorption)
 - (Dissociative Adsorption)
 - (Associative Adsorption)

(Hydrogenation to MCH)

NH₃ Impurity Model Development (JARI Data)

HCHO/HCOOH Impurity Model Development: JARI Data

HCHO Concentration (ppm)

Analysis of HNEI Data: Toluene

Toluene alone: Small ∆V, significant conversion to methyl-cyclohexane
Toluene + CO: Larger ∆V, insignificant hydrogenation

Effect of Inerts (N₂, He, CH₄)

- Giner data for N₂ permeance as a function of T and membrane water content (f_v)
 - N_2 crossover from cathode air may potentially exceed N_2 in H_2
- He permeance from JARI data: 2.4x10⁻¹³ mol/cm.s.kPa at 80°C, 77°C dew point, 1.6 higher than H₂ permeance
- CH₄ and CO₂ are relatively impermeable (HNEI, JARI)

Reference Conditions, Assumptions, Definitions

- 1. Pressurized stack
- 87 kWe at 1 A/cm² with pure H₂
- **50%** O_2 & 70% per-pass H_2 utilization
- N111 membrane, 0.2(c)/0.1(a) mg/cm² Pt loading
- Stack pressure: 2.5/1.9/1.6 atm at 100/25/5% power
- Inlet RH: 60/80/90% at 100/25/5% power
- 2. Purge criteria
- Single purge (14 L) equivalent to 2 volumes of anode subsystem restores gas in anode channels to the H₂ fuel specs
- 3. Definitions
- Concentrations generally reported as max. values after 30-h exposure
- Stack efficiency defined as ratio of DC power produced to the LHV of H₂ consumed (chemically and electrochemically) and purged

Dynamic simulations of Impurity Effects

Purge Loss and Schedule

At low power, purge interval determined primarily by N₂ crossover
At high power, buildup of fuel impurities also affects purge interval

Dynamic Pt Coverage

Steady-state coverage of CO & C₇H₈ functions of P & overpotentials

No SS coverage for H₂S which competes with CO & C₇H₈ for vacant sites

Buildup of Impurities with Dynamic Purge: N₂, He, CO, CO₂

No buildup of CO as it is quantitatively converted to CO₂

Dynamic Buildup of NH₃, H₂S and HCHO

Dynamic Buildup of HCOOH and C₇H₈

- Slower dissociative adsorption of HCOOH than HCHO
- Conversion of toluene to methyl-cyclohexane slows at higher power

Simultaneous Effect of Impurities

- Losses defined with respect to cell voltage and stack efficiency for pure fuel hydrogen accounting for N₂ crossover from cathode
- At <30% power, ∆V approaches zero but 0.35 percentage point reduction in stack efficiency due to buildup of impurities
- Slow increase in ∆V expected at longer exposure because of H₂S uptake

Effect of Anode Pt Loading

Effect of Stack Temperature

■ 70°C stack temperature, 1.5 bar inlet pressure at rated power

Sensitivity Analysis

Results for 100% stack power, ISO max impurity specs with one species at 2X and 0.5 X concentration

Drive Cycle Simulations

Multiple repeats of warm FUDS (1372 s) and FHDS (740 s) for 30 h Insignificant differences in VI curve for the last FUDS-FHDS cycle 5 CO 4 Coverage (%) 3 2 C₇H₈ H₂S 1 0 55 Pt Loading: 0.1(a)/0.2(c) mg/cm² 54 Exposure Time: 30 h Efficiency (%) Temperature: 80°C 53 Pure H₂ 52 ISO H₂ 51 50 5 10 15 20 25 30 0 Time (h)

Summary and Conclusions

- N₂ crossover from air is the main source of N₂ buildup in the anode recycle stream and determines the purge schedule
- Dynamic simulations show that NH₃ cannot accumulate in the anode recycle stream
 - Significant crossover of NH₃ to cathode air
 - Cumulative degradation in performance due to H_2S
- Cyclic buildup of formaldehyde, formic acid and methyl-cyclohexane
- Critical data needs
 - CO/CO₂: H₂ pump data for independent verification of chemical vs. electrochemical CO oxidation
 - NH_3 crossover as function of current density, NH_3 isotherms as functions of RH and T
 - H_2S : Isolation of anode vs. cathode overpotentials
 - Effect of T on behavior of HCHO, HCOOH and C₇H₈

