MASS-PRODUCTION COST ESTIMATION FOR AUTOMOTIVE FUEL CELL SYSTEMS

DOE H₂ PROGRAM REVIEW

BRIAN JAMES, JEFF KALINOSKI & KEVIN BAUM

3601 WILSON BLVD SUITE 650 ARLINGTON, VA 22201 703.243.3383

10 A.

JUNE 9, 2010

FC 018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Base Period: Feb '06 to Jan '08
 - 100% complete
- Option Year 1: Feb '08 to Jan '09
 - 100% complete
- Option Year 2: Feb '09 to Jan '10
 - 100% complete
- Option Year 3: Feb '10 to Jan '11

Barriers

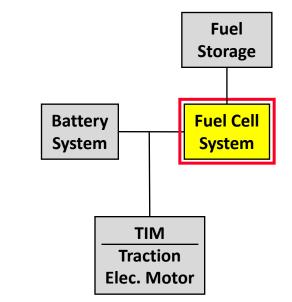
- Manufacturing costs
- Materials costs (particularly precious metal catalysts)

DOE Cost Targets

Characteristic	Units	2010	2015
Stack Cost	\$/kW _{e (net)}	\$25	\$15
System Cost	\$/kW _{e (net)}	\$45	\$30

Timeline

- Total Project Funding:
 - \$407k (2 year base period)
 - \$160k (option year 1)
 - \$166k (option year 2)
 - \$150k (turbocompressor task)
 - \$276k (option year 3)


Collaborations

• Extensive interaction with industry/researchers to solicit design & manufacturing metrics as input to cost analysis.

Project Objectives

- Identify the <u>lowest cost system design and manufacturing methods</u> for an 80 kW_e direct-H₂ automotive PEMFC system based on 2 technology levels:
 - Current (2010) status technology
 - 2015 projected technology
- 2. Determine costs for these 3 tech level systems at 5 production rates:
 - 1,000 vehicles/year
 - 30,000 vehicles/year
 - 80,000 vehicles/year
 - 130,000 vehicles/year
 - 500,000 vehicles/year
- 3. Analyze, quantify & document impact of system performance on cost
 - Use cost results to guide future component development

Project covers complete FC system (specifically excluding battery, traction motor/inverter, and storage)

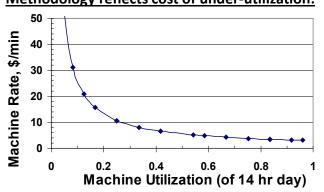
General Cost Analysis Rules

- 80 kW_{net} system (88 kW_{gross} for 2010 system)
- 1k to 500k annual system production
- U.S. labor rates: \$45/hr (fully loaded)
- \$1,100/troy oz. Pt cost used for consistency

Some costs NOT included:

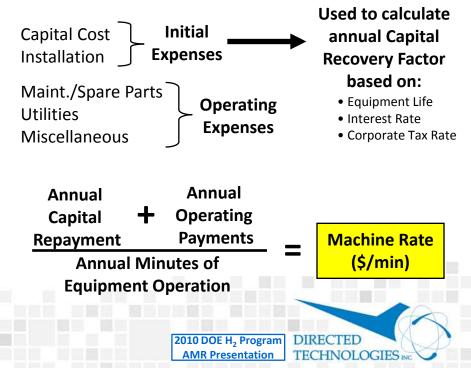
- 10% capital cost contingency
- Warranty
- Building costs (equipment cost included but not building in which equipment is housed)
- Sales Tax
- Non-Recurring Engineering Costs
- Markup for Fuel Cell Manufacturer
 - purchased components (membrane, GDL, compressor) have a manufacturer markup
 - but there is no markup to the Fuel Cell Manufacturer/Assembler

DTI's DFMA[®]-Style Costing Methodology


• DFMA[®] (Design for Manufacturing and Assembly) is a registered trademark of Boothroyd-Dewhurst, Inc.

- Used by hundreds of companies world-wide
- Basis of Ford Motor Co. design/costing method for past 20+ years
- DTI practices are a blend of:
 - "Textbook" DFMA[®], industry standards & practices, DFMA[®] software, innovation and practicality

Estimated Cost = (Material Cost + Processing Cost + Assembly Cost) x Markup Factor


Manufacturing Cost Factors:

- 1. Material Costs
- 2. Manufacturing Method
- 3. Machine Rate
- 4. Tooling Amortization

Methodology reflects cost of under-utilization:

Methodology Reflects Cost of Under-utilization:

Key Technical Targets Define System

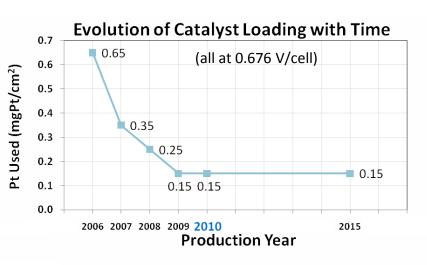
Tech. Targets that drive analysis:			I <mark>s Years</mark> 2009)	2010	2015
Stack Efficiency @ Rated Power	%	55%	55%	55%	55%
MEA Areal Power Density @ Peak Power	mW/cm ²	715	833	833	1,000
Total Pt-Group Catalyst Loading	mg PGM/cm ²	0.25	0.15	0.15	0.15
Key Derived Performance Parameters:					
System Gross Electric Power (Output)	kW	90.2	87.8	87.9	87.3
Active Area	cm ²	339	286	286	237
Cell Voltage @ Peak Power	V/cell	0.676	0.676	0.676	0.676
Operating Pressure (Peak)	atm	2.3	1.69	1.69	1.5

Red text indicates a change from previous year.

- A few key DOE Technical Target values are used to anchor system definition
- All other system parameters flow from DTI calculations & judgment
- 2010 values for key parameters (power density & catalyst loading) remain at 2009 levels

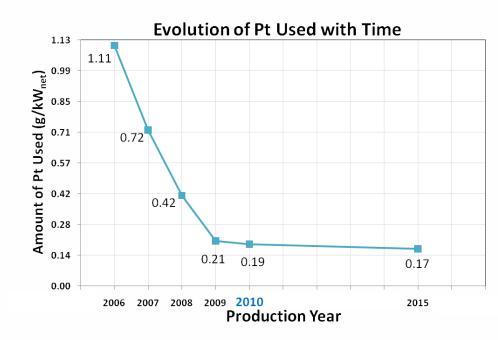
Key Changes Since 2009 AMR

Change	Reason	+/-	500k/year
Final 2008 Value			\$75.07
Switched to 833 mW/cm ² and 0.15 mg/cm ²	Technology improvement, DOE input	(\$10.28)	\$64.79
Switched from water spray humidification to Membrane Humidifier	Technology improvement, Membrane Humid. becoming industry standard	(\$3.02)	\$61.77
Switched from VertiCoater to NSTF	NSTF proven to be durable and yield high-performance	(\$0.03)	\$61.74
Miscellaneous adjustments & improvements	Opportunities for improved analysis	\$0.06	\$61.80
Removed the Exhaust Loop from the 2009 system	Not needed with membrane humidifier	(\$1.42)	\$60.38
Switched to 1 stack/system	Industry & Tech. Team suggestion	(\$0.55)	\$59.83
Capital cost for Stack Conditioning test stand increased to \$357,000	Independent Review Panel suggestion	\$0.10	\$59.93
New Inline Filter for Gas Purity Excursions	Independent Review Panel suggestion	\$0.28	\$60.21
New Flow Diverter Valve	Independent Review Panel suggestion	\$0.19	\$60.40
Updated to Honeywell cost estimate for CEM & Motor Controller	Significant analysis improvement, much higher confidence level	\$0.19	\$60.59
Corrected to <u>3M design conditions</u> (833 mW/cm ² , 2.5 air stoichiometry, 1.69 atm), Membrane Humidifier enlarged	Performance charateristics now tied to appropriate polarization curves	\$0.37	\$60.96
Final 2009 Value	-\$14.11/kW _{net} since 20	08	\$60.96
Descenfizzare d Fischer Costern	Industry input -> removed prop. valve & press. transducer, added OPCO &	(\$4.02)	¢56.40
Reconfigured Ejector System	check valves, relies on H ₂ storage system for some pressure regulation	(\$4.83)	\$56.13
Improved System Controller DFMA Analysis	Improved Cost Analysis by adding greater detail	(\$1.70)	\$54.43
Lowered channel depth of stamped plates from 0.92 to 0.5 mm	Industry input, allows gasket material reduction	(\$1.03)	\$53.39
Changed Temperature at Peak Power from 80°C to 90°C	Improved durability allows higher peak temperature	(\$0.50)	\$52.89
Changed Membrane Humidifier to larger model	Previous model not large enough to handle mass flow	\$0.40	\$53.29
Added Demister and Air Precooler	Added requirement after ANL review	\$0.80	\$54.09
Added Part and Material Yields across all components	Added part yields at component level, homogenized methodology	\$0.08	\$54.17
Low-Temperature Coolant Loop reconfigured & reinserted	Needed for Air Precooler & CEM, but only 39% of LTL cost is included	\$0.77	\$54.94
Improved Wiring Analysis	Improved and updated wire lengths and specifications	(\$0.84)	\$54.10
CEM costs scaled to better reflect operating parameters	New data from Honeywell, improved cost analysis	(\$0.65)	\$53.45
Assorted BOP Changes	Improved Cost Analysis (H ₂ piping, air tubing, mass air flow sensor, etc.)	(\$2.22)	\$51.23
Miscellaneous Costs	Improved Cost Analysis (improved calculations, error fixes, etc.)	\$0.07	\$51.31
Final 2010 Value			\$51.31


-\$9.65/kW_{net} since

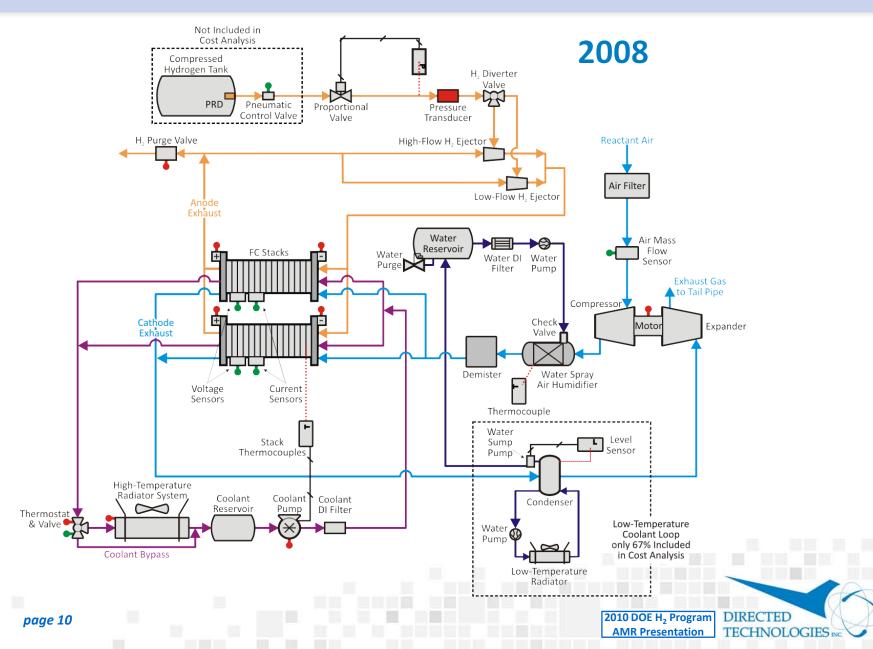
System Comparison

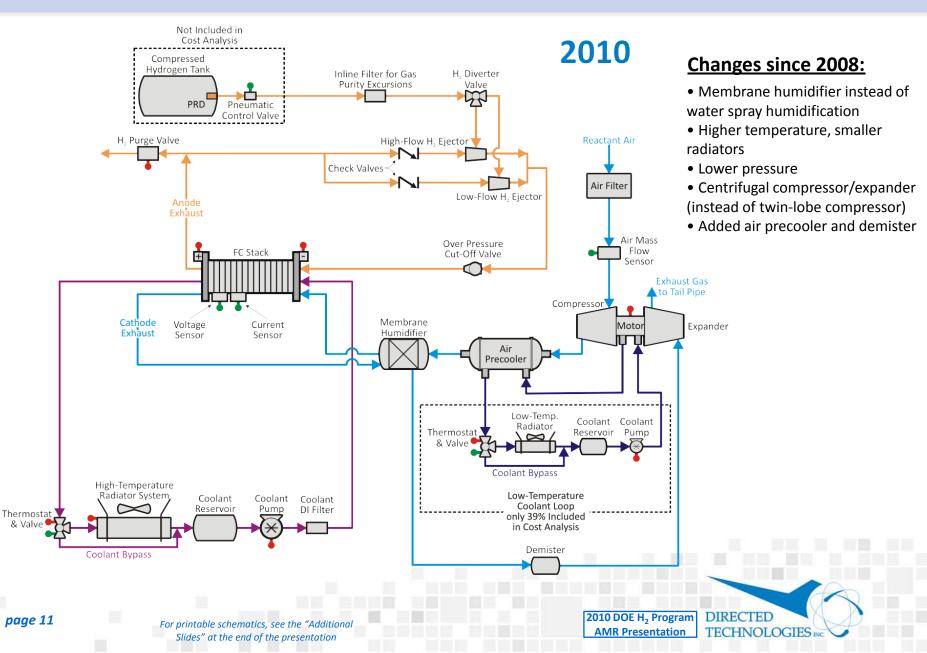
	2008 Technology	2009 Technology	2010 Technology	2015 Technology
Power Density (mW/cm ²)	715	833	833	1,000
Total Pt loading	0.25	0.15	0.15	0.15
Operating Pressure (atm)	2.30	1.69	1.69	1.5
Peak Stack Temp. (°C)	80	80	90	99
Active Cells per Stack	372	372	369	369
Membrane Material	Nafion on ePTFE	Nafion on ePTFE	Nafion on ePTFE	Advanced High-Temperature
	Aluminum Radiator,	Aluminum Radiator,	Aluminum Radiator,	Smaller Aluminum Radiator,
Radiator/ Cooling System	Water/Glycol coolant,	Water/Glycol coolant,	Water/Glycol coolant,	Water/Glycol coolant,
	DI filter	DI filter	DI filter	DI filter
Bipolar Plates	Stamped SS 316L with Coating	Stamped SS 316L with Coating	Stamped SS 316L with Coating	Stamped SS 316L with Coating
Air Compression	Twin-lobe compressor, twin-lobe expander	Centrifugal Compressor,	Centrifugal Compressor,	Centrifugal Compressor,
All compression	Twin-tobe compressor, twin-tobe expanded	Radial Inflow Expander	Radial Inflow Expander	No Expander
Gas Diffusion Layers	Carbon Paper Macroporous Layer with	Carbon Paper Macroporous Layer with	Carbon Paper Macroporous Layer with	Carbon Paper Macroporous Layer with
Gas Diffusion Layers	Microporous layer applied on top	Microporous layer applied on top	Microporous layer applied on top	Microporous layer applied on top
Catalyst Application	Double-sided vertical die-slot coating of membrane	Nanostructured Thin Film (NSTF)	Nanostructured Thin Film (NSTF)	Nanostructured Thin Film (NSTF)
Air Humidification	Water Spray Injection	Polyamide Membrane	Polyamide Membrane	None
H ₂ Humidification	None	None	None	None
Exhaust Water Recovery	SS Condenser (Liquid/Gas HX)	None	None	None
MEA Containment	Injection molded LIM Hydrocarbon MEA	Injection molded LIM Hydrocarbon MEA	Injection molded LIM Hydrocarbon MEA	Injection molded LIM Hydrocarbon MEA
MEA Containment	Frame/Gasket around Hot-Pressed M&E	Frame/Gasket around Hot-Pressed M&E	Frame/Gasket around Hot-Pressed M&E	Frame/Gasket around Hot-Pressed M&E
Coolant & End Gaskets	Laser Welding/	Laser Welding/	Laser Welding/	Laser Welding/
	Screen-Printed Adhesive Resin	Screen-Printed Adhesive Resin	Screen-Printed Adhesive Resin	Screen-Printed Adhesive Resin
Freeze Protection	Drain water at shutdown	Drain water at shutdown	Drain water at shutdown	Drain water at shutdown
	2 for FC system	2 for FC system	2 for FC system	
H ₂ Sensors	1 for passenger cabin (not in cost estimate)	1 for passenger cabin (not in cost estimate)	1 for passenger cabin (not in cost estimate)	None
	1 for fuel system (not in cost estimate)	1 for fuel system (not in cost estimate)	1 for fuel sys (not in cost estimate)	
End Plates/	Composite molded end plates with	Composite molded end plates with	Composite molded end plates with	Composite molded end plates with
Compression System	compression bands	compression bands	compression bands	compression bands
Stack Conditioning	5 hours of power conditioning	5 hours of power conditioning	5 hours of power conditioning	3 hours of power conditioning



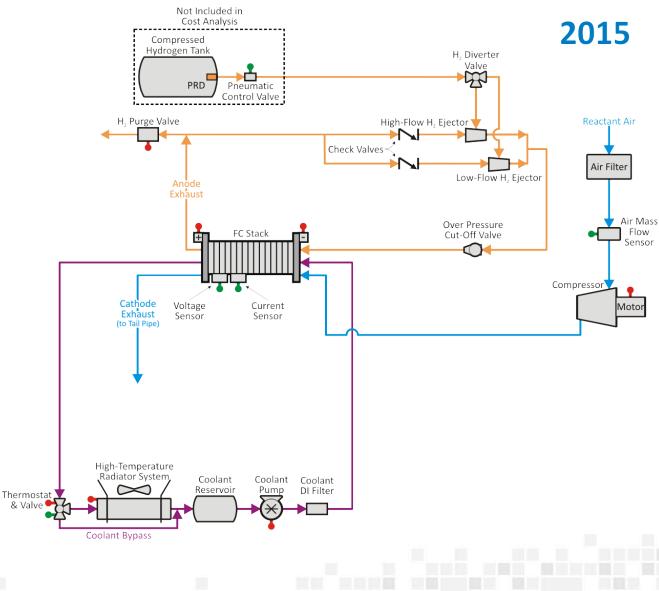
Power Density & Platinum Loading

Power Density Evolution with Time 1,100 Power Density (mW/cm²) 1,050 1.000 mW/cm² 1,000 mW/cm² 1,000 950 1000 900 833 833 850 800 750 715 DOE Targets **4**700 700 650 600 583 550 500 2006 2007 2008 2009 2010 2015 **Production Year**


- Areal catalyst loadings have been decreasing
- Catalyst loading reductions appear to be slowing down
- Focus has switched to durability/robustness


Possible significant future improvements:

- Power density increases
- Switch to non-Pt catalyst


Simplification is Key to Cost Reduction

Simplification is Key to Cost Reduction

Simplification is Key to Cost Reduction

Changes since 2008:

• Membrane humidifier instead of water spray humidification

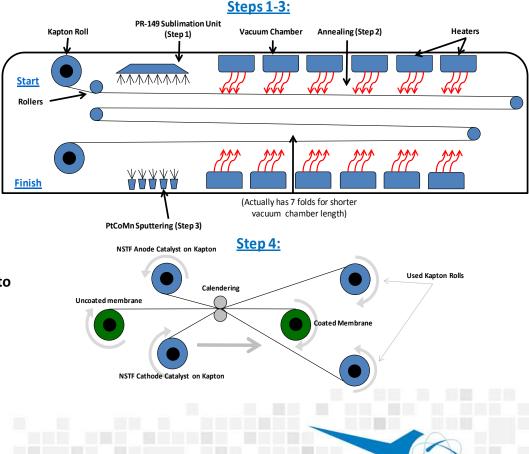
- Higher temperature, smaller radiator
- Lower pressure

• Centrifugal compressor/expander (instead of twin-lobe compressor)

• Added air precooler and demister

Changes for 2015:

- Higher temperature, smaller radiator
- No humidification
- Lower pressure
- Smaller compressor
- No expander


page 12

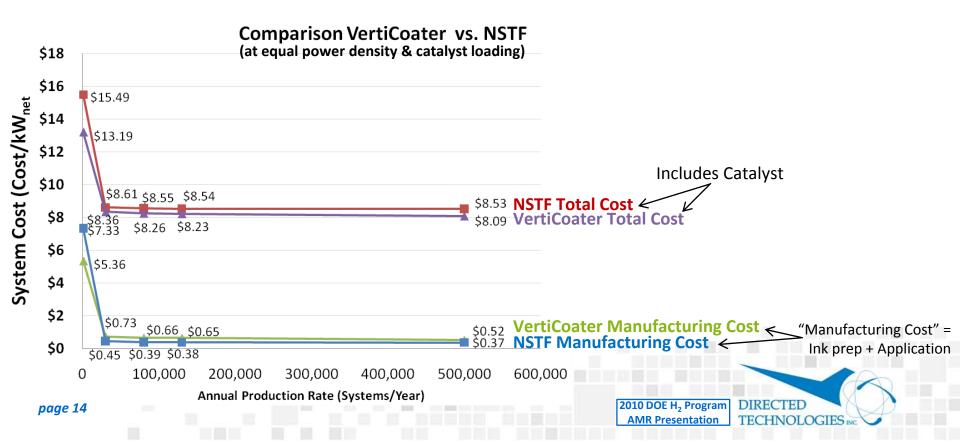
For printable schematics, see the "Additional Slides" at the end of the presentation

NanoStructured Thin Film (NSTF) Catalysts New for 2009

- DFMA[®] analysis conducted
- Process based on open-literature description of 3M process
- Assumptions discussed/vetted with 3M
- Cost results are consistent with 3M proprietary price projections
- 4-step roll-to-roll process:
 - 1) Sublimation of PR-149 (Perylene Red pigment 149) onto DuPont Kapton[®] polyimide web
 - 2) Vacuum annealing
 - 3) Platinum or metallic alloy is vapor deposited onto the crystalline nanostructures
 - 4) Roll-to-roll transfer of catalyst from Kapton[®] to membrane

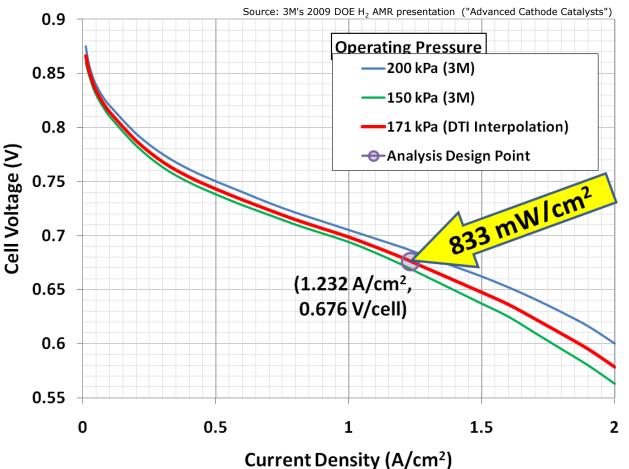
• Capital cost is surprisingly low even for high capacity system

2010 DOE H₂ Program


AMR Presentation

TECHNOLOGIES

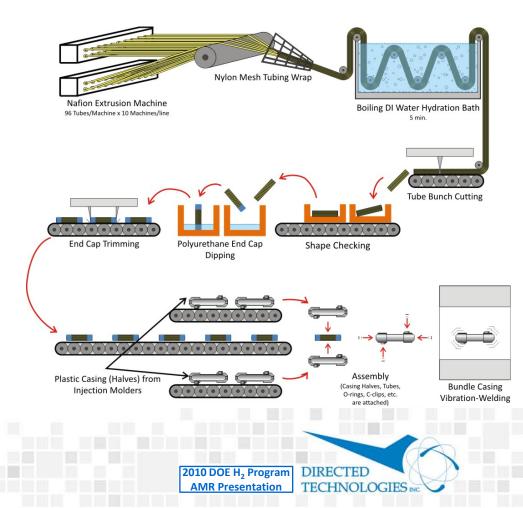
NanoStructured Thin Film (NSTF) Catalysts New for 2009


Compared to VertiCoater method (roller application method used in 2008 analysis):

- The NSTF method assumes a PtCoMn ternary catalyst
- For a given power density & catalyst loading, the NSTF application method (\$8.53/kW_{net}) is slightly more expensive than previous (\$8.09/kW_{net})
- However, NSTF catalyst *enables* the improved power density & catalyst loading used for 2009 & 2010 systems; yields a net \$10.28/kW_{net} savings

Cell Performance based on Latest 3M Data New for 2009

- For 2009, performance parameters switched from Tech Team specifications to latest 3M NSTF polarization data
- 3M: No change in performance between 2009 & 2010
- Design point selection:
 - 0.676 V/cell
 - **171 kPa**
 - 833 mW/cm²
 - 0.15 Pt/cm² (anode + cathode)
 - 2.5 air stoichiometry
 - 67% relative humidity
 - 80°C
- This ensures consistency between our assumed performance and the components specified

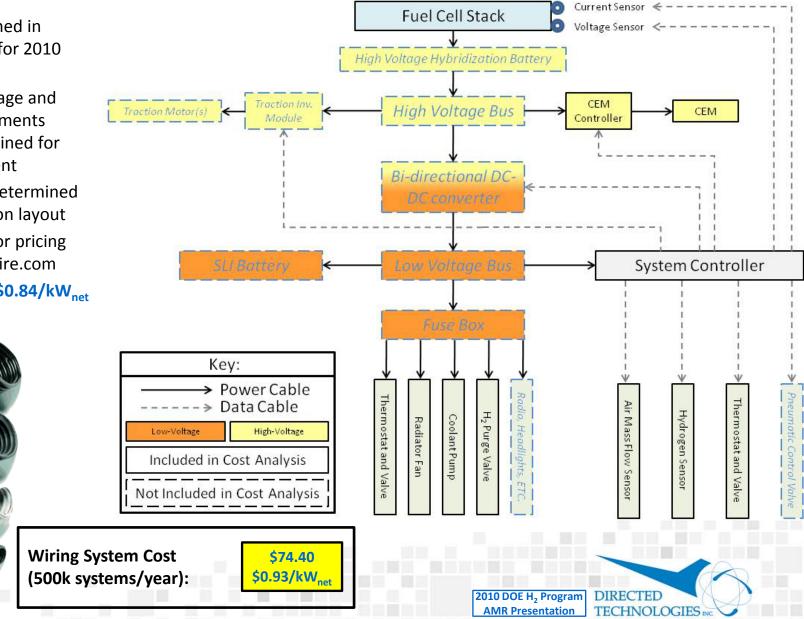


Membrane Air Humidifier New for 2009

- Sizing and materials based on membrane humidifier from Perma Pure, LLC
- Replaces water-spray humidification system used in 2008 analysis

- Nafion[®] extrusion, 45 cm/min
- 5 minute DI water bath dwell time
- 30 second polyurethane end cap set time
- 30 second vibration welding time for casing

Membrane Humidifier Cost (500k systems/year):


Detailed Wiring Analysis

- Wiring examined in greater detail for 2010 update
- Power, amperage and length requirements carefully examined for each component
- Cable length determined by configuration layout
- Wire/connector pricing from waytekwire.com
- Reduction of \$0.84/kW_{net} from 2009

10000000000

page 17

.....

New System Controller (ECU) Analysis Improved for 2010

- New DFMA[®]-Style Analysis
- Comes from discussion and collaboration with DOE
- Reduces Cost of ECU by \$1.70/kW_{net} compared to previous cost estimate

ECU Requirement	s	Er	Engine Control Unit (ECU) and Associated Sensors							
Name Signal		Component	Description	Cost at 500k systems/year	Cost Basis					
Air Mass Flow Sensor	Analog	{		systems/year	\$5.34 for single layer of 6.5"x4.5" punchboard,					
	U	Main Circuit Board	2 layer punchboard	\$8.01	Q=500, Assume 25% discount for Q=500K					
H ₂ Pressure Sensor (upstream of ejector)	Analog			40.40	. , .					
H ₂ Pressure Sensor (stack inlet manifold)	Analog	Input Connector	Wire connector for inputs	\$0.18	\$0.23 each in Q=10k, reduced ~20% for Q=500k					
Air Pressure Sensor (after compressor)	Analog	Output Connector	Wire connector for outputs	\$0.20	\$0.23 each in Q=10k, reduced ~20% for Q=500k					
Stack Voltage (DC bus)	Analog			622 52	Digi-Key Part No. 336-1489-ND, \$50@Q=1,					
Throttle Request	Analog	Embedded Controller	25 MHz, 25 channel microprocessor board	\$32.50	assumed 35% reduction for Q=500k					
Current Sensors (drawn from motor)	Analog			40 - 4	Digi-Key Part No. 785-1047-2-ND,					
Current Sensors (output from stack)	Analog	Mosfets (17 total, 1 each per I/O)	P-channel, 2W, 49MOhm @5A, 10V	\$3.74	\$0.2352@Q=3k,\$0.2184@Q=12k					
Signal for Coolant Temperature	Analog			64.25	Estimate based on \$0.25 component for each					
H ₂ Leak Detector	Digital	Misc. Board Elements	Capacitor, resistors, etc.	\$4.25	input/output					
Outputs		Housing		ćr. 00	Estimate based on comparable shielded,					
Signal to TIM	Analog	Housing	Shielded plastic housing, watertight	\$5.00	electronic enclosures. Includes fasteners.					
Signal to CEM	Analog	A see welch a	A	ć= 00	Robotic assembly of approx. 50 parts at 3.5sec					
Signal to Ejector 1	PWM	Assembly	Assembly of boards/housing	\$5.83	each, \$2/min assembly cost.					
Signal to Ejector 2	PWM	Cantingana		4- 0-	Standard DFMA additional cost to capture					
High Voltage System Relay	Digital	Contingency	10% of all components	\$5.97	unenumerated elements/activities.					
Signal to Coolant Pump	PWM	Markup	25% of all Components	\$16.42	Manufacturers Markup					
Signal to H ₂ Purge Valve	Digital	ECU Subtotal		\$82.11						
Total Analog	11	Current Sensor (for stack current)	~400A, Hall Effect transducer	\$10.00	Based on LEM Automotive Current Transducer					
Total Digital	3	current sensor (for stack current)	400A, Hall Effect transducer	\$10.00	HAH1BV S/06, 400A.					
Total PWM	3	Current Sensor (for motor current)	24004 Hall Effect transducer	\$10.00	Based on LEM Automotive Current Transducer					
Total Inputs/Outputs	17	current sensor (for motor current)	400A, Hall Ellett transuuter	\$10.00	HAH1BV S/06, 400A.					
	1/	J			Rough estimate based on a small Hall Effector					
		Voltage Sensor	225-335V	\$8.00	sensor in series with a resistor					
		ECU + Sensors Total		\$110.11						

ECU and Sensors Cost (500k systems/year):

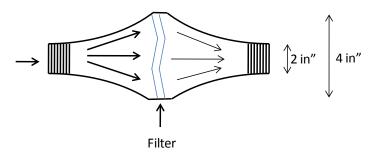
\$110.11 \$1.38/kW_{net}

2010 DOE H₂ Program **AMR Presentation**

page 18

Interaction with Argonne National Laboratory New for 2010

- Key accomplishment has been collaboration/validation with Rajesh Ahuwalia at Argonne to validate our system designs
 - Added a demister
 - Removes liquid water from cathode stream before expander
 - Added a pre-cooler between air compressor & membrane humidifier
 - ANL analysis shows membrane humidifier works best with ~55°C input
 - Minor adjustments of operating parameters & assumptions
 - No major component or architectural changes


Pre-cooler (\$0.73/kW_{net})

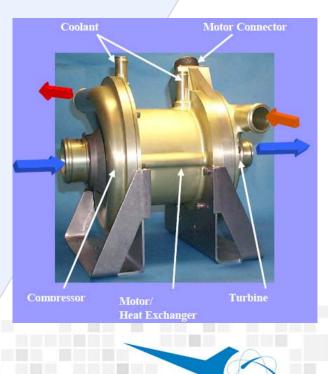
Pre	Precooler Parameters									
System Pressure		1.5 atm	1.75 atm	2 atm						
Air flow rate	g/s	85.5	87.5	88.4						
Air temperature	°C	100	120	139						
Heat duty	kW	4	5.4	6.9						
Coolant flow rate	g/s	790	860	930						
Coolant temperature	°C	50	55	60						
Frontal area	cm ²	100	100	100						
Depth	cm	9.3	12.5	12						
Volume	L	4	4.5	4.4						
Weight	kg	3.6	3.8	3.6						

WWW.FROZENBOOST.COM

- Designed to reduce temp. of compressed air to 55 C before membrane humidifier, which could be damaged by high temp.
- Pre-cooler design based on liquid/air cross-flow pre-cooler design of frozenboost.com intercooler, sealed for heat duty
- 100% aluminum, 24 fins/inch

Demister (\$0.08/kW_{net})

- Removes water from cathode exhaust before inlet to expander
- Polypropylene housing with nylon mesh water filter
- Two ends of housing unscrew for filter replacement

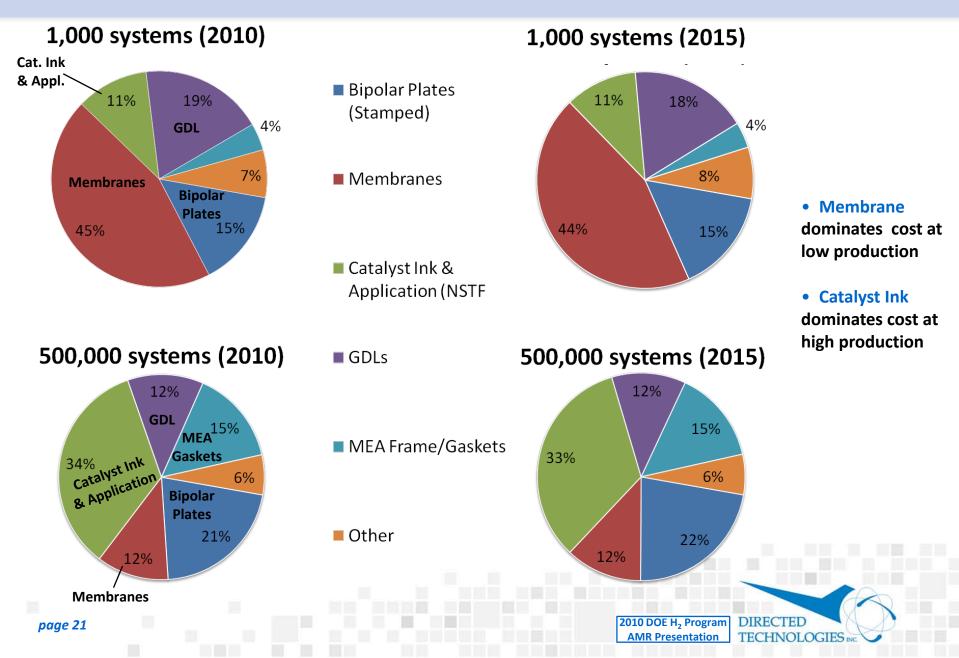


Detailed CEM Cost Study with Honeywell New for 2009

- CEM = Compressor-Expander-Motor
- CEM has a large impact on total system cost:
 - 16.0% of system cost (2010, 500k systems/year)
 - 6.5% of gross power (2010, 500k systems/year)
- Based on Honeywell CEM proprietary detailed design drawings and controller design
- Tailored to fit DTI system
- Developed 6 CEM configurations, plus the associated control electronics
- Analysis based on vendor quotes and DFMA[®]
 - 1k to 500k systems/year examined
- Updated for 2010 to scale with pressure & power requirements

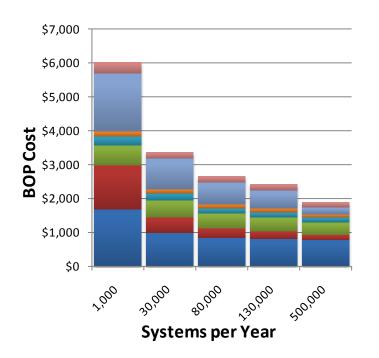
		CEM			Mo			
Design	Sys/year	Cost	Assembly	Markup	Cost	Assembly	Markup	
	\$868.25			\$408.92			\$1,483.18	
Design 2	30,000	\$353.11			\$340.11			\$815.08
Near-Future	80,000	\$251.59	\$23.00	15%	\$328.94	\$7.67	10%	\$686.04
Turbocharger 165k rpm	130,000	\$247.03			\$314.23			\$664.63
Tookipiii	500,000	\$240.44			\$303.39			\$645.12

	Current (100k rpm)	Near Future (165k rpm)	Future (165k rpm)
With Expander	Design 1	Design 2 (2010 tech)	Design 3
Without Expander	Design 4	Design 5	Design 6 (2015 tech)

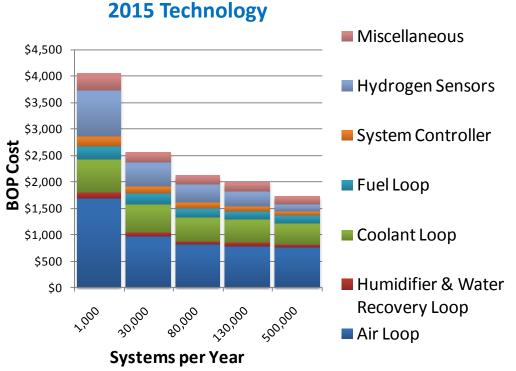


TECHNOLOG

2010 DOE H₂ Program


AMR Presentation

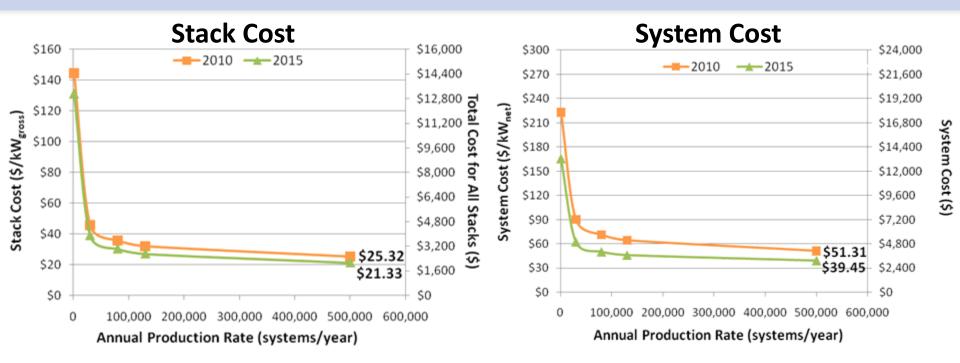
Stack Component Cost Distribution



Balance of Plant

2010 Technology

- Increases in manufacturing rate leads to largest savings.
- Air Compressors and Sensors are the two categories that have the largest \$ decline, together yielding 70% of the BOP cost decline from low production to high production.



- Technology changes yield lesser BOP savings and comes in form of reduced/eliminated components.
- Simplifications of Air & Humidifier loops yield majority of technology improvement savings.

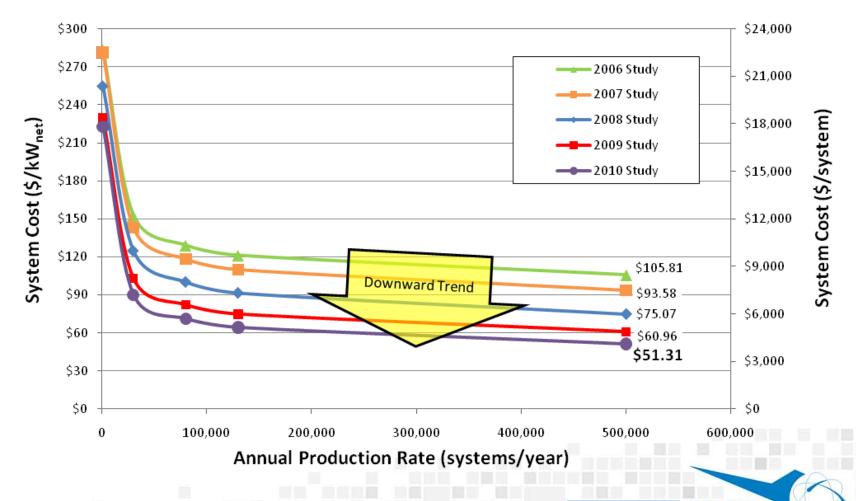
page 22

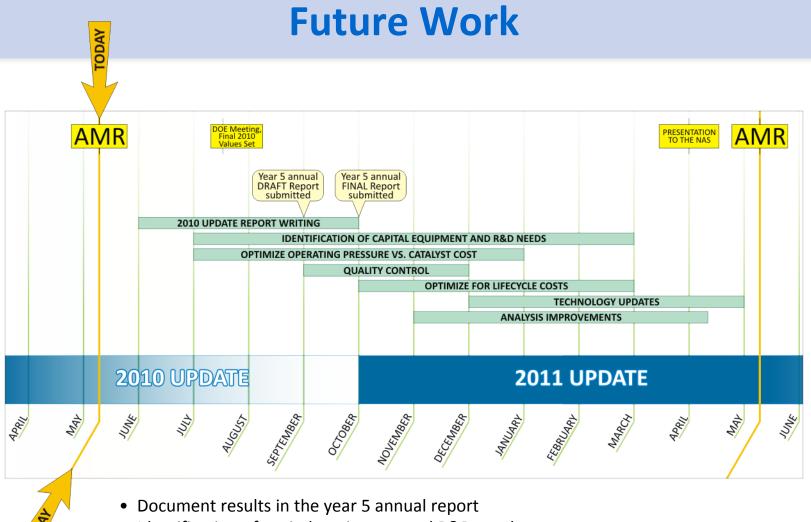
Stack & System Costs vs. Annual Production Rate

2010 2015

- Power Density = 833 mW/cm²
- Catalyst Loading = 0.15 mgPt/cm²

	2010	2012		
DOE Target: Stack Cost \$/kW _{e (net)}		\$25	\$15	
Study Estimate:	Stack Cost	<mark>\$/kW_{e (net)}</mark>	\$25	\$21
DOE Target:	System Cost	\$/kW _{e (net)}	\$45	\$30
Study Estimate:	System Cost	\$/kW _{e (net)}	\$51	\$39




2010 DOE H₂ Program DIRECTED AMR Presentation TECHNOLOGIES

Progress in the Analysis

Since 2006:

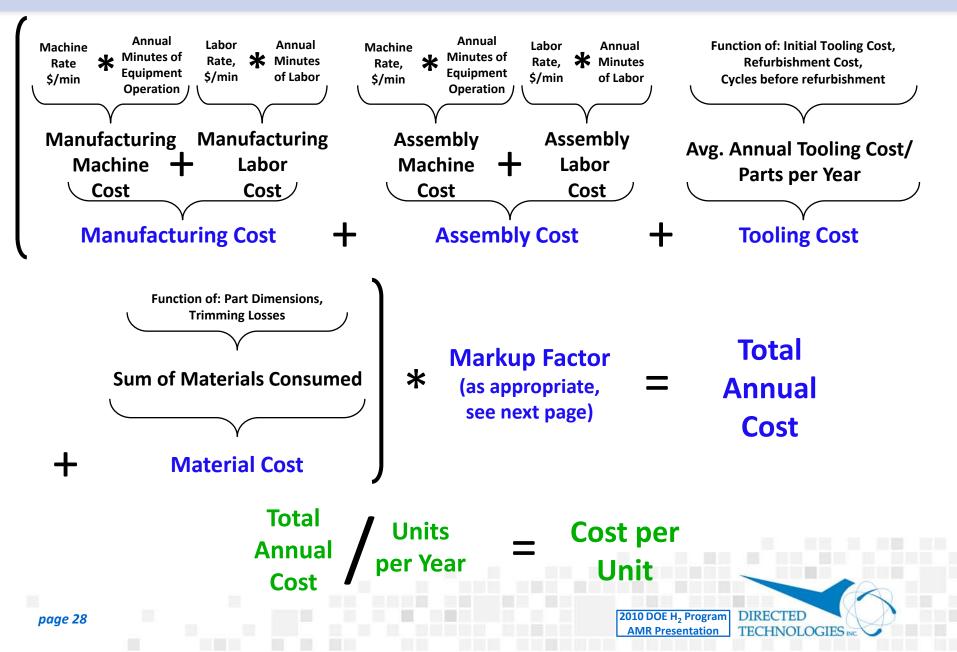
The current technology cost projection has dropped by 52% (at 500,000 sys/year) due to a combination of technology improvement and analysis refinement

- Identification of capital equipment and R&D needs
- Optimize the operating pressure vs. catalyst cost balance
- Enhance quality control analysis
- Perform lifecycle cost analysis

End of Presentation

Thank you.

page 26


Additional Slides

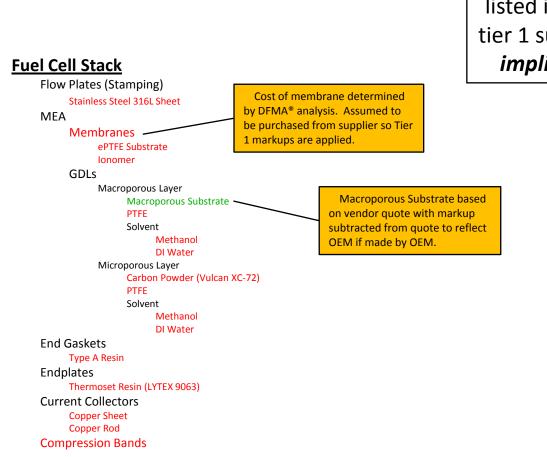
The following slides are provided for further clarification

page 27

DTI's DFMA[®]-Style Costing Methodology (Cont'd)

Markup Basics

- Traditional automotive "markup" Includes:
 - General & Administrative (G&A)
 - Research & Development (R&D)
 - Profit
 - Scrap
- Markup are applied to each step of manufacture/assembly to appropriately compensate performer for legitimate incurred costs and for adding value.
- Many layers of markup are incurred if part/component passes through many entities on its way to final assembly
 - Vertically integrated businesses will have fewer "markup costs" than horizontally integrated businesses
- Different markup percentages are incurred if value is added rather than if component is just "passed through"



Application of Markup

- DTI cost study applies markup as follows:
 - No fuel cell system OEM markup is applied
 - OEM is entity that sells final FC System (i.e. Ballard, UTC, GM, etc.)
 - We assume vertical integration for fuel cell stack
 - Stack is manufactured and assembled in-house by OEM
 - Thus there is no markup on stack manufacture and assembly
 - Exception to Rule: Membrane fabricated by Tier 1 Supplier so there is manufacturing markup to that supplier
 - BOP components are purchased from vendors
 - Thus there is manufacturing and component assembly markup to that supplier
 - Purchased materials & components contain supplier markup
 - No markup is associated with the final system assembly

Purchased Materials & Components

All materials and components listed in red are purchased from a tier 1 supplier, and thus include an *implicit manufacturer markup*

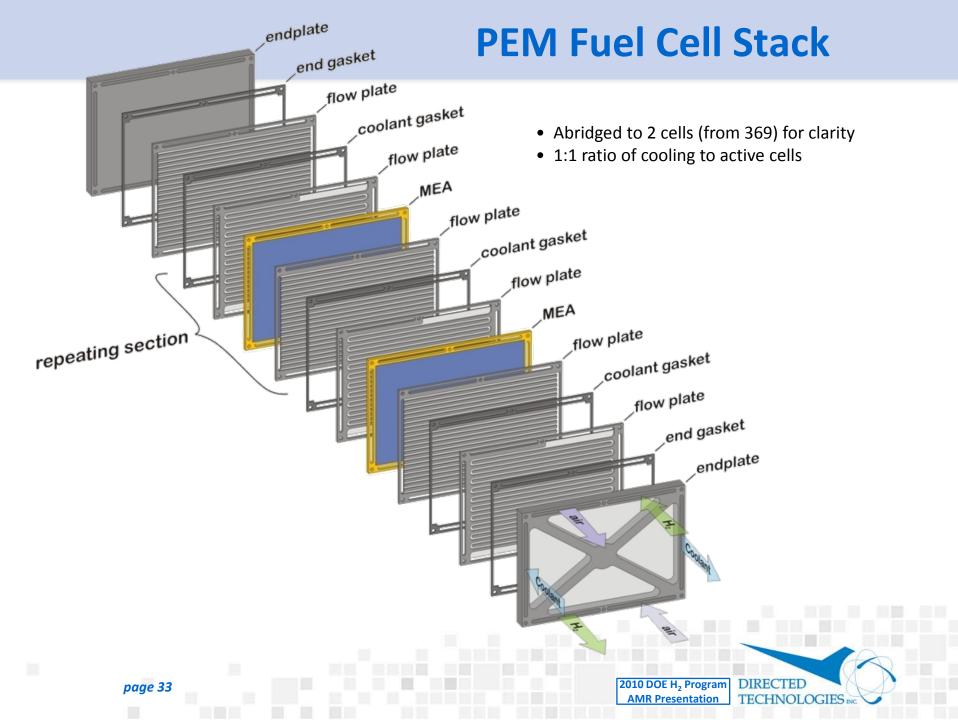
Balance of Plant

Mounting Frames [All Sub-Components] Air Loop Air Compressor, Expander, Motor [All Sub-Components] [All Other Sub-Components] Humidifier & Water Recovery Loop Air Humidifier Assembly [All Sub-Components] [All Other Sub-Components] Coolant Loop [All Sub-Components] Fuel Loop [All Sub-Components] System Controller/Sensors [All Sub-Components] **Miscellaneous BOP** Wiring [All Sub-Components] Belly Pan [All Sub-Components] [All Other Sub-Components]

2010 DOE H₂ Program DIRECTED AMR Presentation TECHNOLOGIES

Detailed Wiring Costs

			2	010			2	015			2	030	
Component	Туре	Length (m)	Quantity	Cable Total	Connector Total	Length (m)	Quantity	Cable Total	Connector Total	Length (m)	Quantity	Cable Total	Connector Total
CEM	Power Cable, 7 Gauge	0.5	1	\$1.64	\$1.38	0.5	1	\$1.64	\$1.38	0.5	1	\$1.64	\$1.38
CEM Controller	Data Cable, 16 Gauge	0.5	1	\$0.28	\$2.00	0.5	1	\$0.28	\$2.00	0.5	1	\$0.28	\$2.00
Air Mass Flow Sensor	Data Cable, 16 Gauge	0.5	1	\$0.28	\$2.00	0.5	1	\$0.28	\$2.00	0.5	1	\$0.28	\$2.00
HTL Coolant Pump	Power Cable, 7 Gauge	1	1	\$3.27	\$1.38	1	1	\$3.27	\$1.38	1	1	\$3.27	\$1.38
HTL Thermostat and Valve	Power Cable, 12 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00
HTL Thermostat and Valve	Data Cable, 16 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00
HTL Radiator Fan	Power Cable, 7 Gauge	1	1	\$3.27	\$1.38	1	1	\$3.27	\$1.38	1	1	\$3.27	\$1.38
LTL Coolant Pump	Power Cable, 7 Gauge	1	1	\$3.27	\$1.38	1	0	\$0.00	\$0.00	1	0	\$0.00	\$0.00
LTL Thermostat and Valve	Power Cable, 12 Gauge	1	1	\$0.56	\$2.00	1	0	\$0.00	\$0.00	1	0	\$0.00	\$0.00
LTL Thermostat and Valve	Data Cable, 16 Gauge	1	1	\$0.56	\$2.00	1	0	\$0.00	\$0.00	1	0	\$0.00	\$0.00
H ₂ Pressure Relief Device	Data Cable, 16 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00
Pressure Switch	Data Cable, 16 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	0	\$0.00	\$0.00
H ₂ Purge Valve	Power Cable, 12 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00
System Controller	Power Cable, 6 Gauge	0.25	1	\$1.04	\$1.38	0.25	1	\$1.04	\$1.38	0.25	1	\$1.04	\$1.38
H ₂ Sensors	Data Cable, 16 Gauge	1	2	\$1.12	\$4.00	1	0	\$0.00	\$0.00	1	0	\$0.00	\$0.00
Current Collectors	Power Cable, OOOO Gauge	0.25	2	\$8.32	\$23.44	0.25	2	\$8.32	\$23.44	0.25	2	\$8.32	\$23.44
Stack Current Sensor	Data Cable, 16 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00
Stack Voltage Sensor	Data Cable, 16 Gauge	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00	1	1	\$0.56	\$2.00
Total (\$)		16.25	20	\$27.52	\$56.34	11.25	15	\$22.01	\$46.96	12.25	16	\$22.57	\$48.96
Total (\$/kW _{net})				\$0.34	\$0.70			\$0.28	\$0.59			\$0.28	\$0.61


Total cost of
\$1.04/kW_{net}
for 2010 analysis

Down from
\$1.77/kW_{net}
in 2009 analysis

• Wire fasteners add 0.19/kW_{net} (and are bookkept under Wire/Tube/Pipe Fastener category)

2010 DOE H₂ Program	DIRECTED
AMR Presentation	TECHNOLOGIES INC

			Max	
Cable Type	Cost (\$/m)	Connector Cost	Current (A)	Material
Data Cable, 16 Gauge	\$0.56	\$1.00	3.7	Copper
Power Cable, 6 Gauge	\$4.15	\$0.69	37	Copper
Power Cable, 7 Gauge	\$3.27	\$0.69	30	Copper
Power Cable, 12 Gauge	\$0.67	\$0.94	9.3	Copper
Power Cable, OOOO Gauge	\$16.64	\$5.86	302	Copper

Bill of Materials: Stack (2010 Technology)

	2010					
Annual Production Rate	1,000	30,000	80,000	130,000	500,000	
System Net Electric Power (Output)	80	80	80	80	80	
System Gross Electric Power (Output)	87.91	87.91	87.91	87.91	87.91	
Bipolar Plates (Stamped)	\$1,684.28	\$434.15	\$439.95	\$433.03	\$429.07	
MEAs						
Membranes	\$5,184.51	\$908.84	\$562.23	\$438.23	\$230.78	
Catalyst Ink & Application (NSTF)	\$1,252.28	\$700.37	\$695.57	\$698.62	\$694.83	
GDLs	\$2,140.33	\$1,111.35	\$691.53	\$537.04	\$242.57	
M & E Hot Pressing	\$72.09	\$9.98	\$8.23	\$8.36	\$8.16	
M & E Cutting & Slitting	\$56.94	\$4.42	\$3.29	\$3.02	\$2.82	
MEA Frame/Gaskets	\$469.80	\$319.59	\$311.95	\$308.29	\$301.42	
Coolant Gaskets (Laser Welding)	\$185.48	\$26.48	\$29.43	\$27.39	\$25.54	
End Gaskets (Screen Printing)	\$149.48	\$5.08	\$1.97	\$1.25	\$0.54	
End Plates	\$87.43	\$33.55	\$28.91	\$26.21	\$19.86	
Current Collectors	\$16.79	\$7.18	\$5.99	\$5.54	\$5.07	
Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00	
Stack Assembly	\$76.12	\$40.69	\$34.95	\$33.62	\$32.06	
Stack Conditioning	\$170.88	\$53.87	\$47.18	\$41.38	\$28.06	
Total Stack Cost	\$11 <i>,</i> 556.43	\$3,663.54	\$2,867.17	\$2,567.50	\$2,025.76	
Total Stack Cost (\$/kW _{net})	\$144.46	\$45.79	\$35.84	\$32.09	\$25.32	
Total Stack Cost (\$/kW _{gross})	\$131.46	\$41.67	\$32.62	\$29.21	\$23.04	

• 5.7 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Stack (2015 Technology)

			2015		
Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.27	87.27	87.27	87.27	87.27
Bipolar Plates (Stamped)	\$1,634.29	\$386.30	\$392.11	\$385.17	\$380.72
MEAs					
Membranes	\$4,657.35	\$827.11	\$507.81	\$394.04	\$204.21
Catalyst Ink & Application (NSTF)	\$1,134.71	\$578.48	\$573.71	\$572.51	\$569.63
GDLs	\$1,853.85	\$916.89	\$565.27	\$440.78	\$196.86
M & E Hot Pressing	\$71.29	\$6.83	\$6.54	\$5.94	\$5.95
M & E Cutting & Slitting	\$56.55	\$3.90	\$2.76	\$2.50	\$2.19
MEA Frame/Gaskets	\$403.76	\$263.06	\$256.85	\$253.61	\$248.04
Coolant Gaskets (Laser Welding)	\$184.80	\$26.26	\$24.78	\$24.44	\$23.90
End Gaskets (Screen Printing)	\$149.48	\$5.08	\$1.97	\$1.25	\$0.53
End Plates	\$77.96	\$27.02	\$23.58	\$21.51	\$16.46
Current Collectors	\$15.08	\$6.24	\$5.16	\$4.77	\$4.36
Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00
Stack Assembly	\$76.12	\$40.69	\$34.95	\$33.62	\$32.06
Stack Conditioning	\$166.06	\$35.11	\$27.72	\$24.98	\$16.84
Total Stack Cost	\$10,491.30	\$3,130.97	\$2,429.21	\$2,170.63	\$1,706.73
Total Stack Cost (\$/kW _{net})	\$131.14	\$39.14	\$30.37	\$27.13	\$21.33
Total Stack Cost (\$/kW _{gross})	\$120.21	\$35.87	\$27.83	\$24.87	\$19.56

• 6.1 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Balance of Plant (2010 Technology)

			2010		
Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.91	87.91	87.91	87.91	87.91
Air Loop	\$1,695.29	\$990.72	\$830.17	\$802.46	\$770.35
Humidifier and Water Recovery Loop	\$1,297.97	\$468.31	\$309.37	\$251.89	\$158.70
High-Temperature Coolant Loop	\$564.28	\$478.15	\$409.86	\$387.20	\$356.91
Low-Temperature Coolant Loop	\$82.55	\$73.70	\$68.30	\$64.50	\$60.56
Fuel Loop	\$251.94	\$198.65	\$170.49	\$163.40	\$152.96
System Controllers	\$171.07	\$136.85	\$102.64	\$95.80	\$82.11
Sensors	\$1,706.65	\$893.00	\$659.96	\$543.45	\$225.49
Miscellaneous	\$336.34	\$198.75	\$176.07	\$169.43	\$161.32
Total BOP Cost	\$6,106.09	\$3,438.13	\$2,726.86	\$2,478.12	\$1,968.41
Total BOP Cost (\$/kW _{net})	\$76.33	\$42.98	\$34.09	\$30.98	\$24.61
Total BOP Cost (\$/kW _{gross})	\$69.46	\$39.11	\$31.02	\$28.19	\$22.39

• 3.2 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Balance of Plant (2015 Technology)

	2015				
Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.27	87.27	87.27	87.27	87.27
Air Loop	\$1,318.59	\$786.05	\$651.31	\$628.59	\$604.72
Humidifier and Water Recovery Loop	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
High-Temperature Coolant Loop	\$582.52	\$493.84	\$423.56	\$400.06	\$368.65
Low-Temperature Coolant Loop	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Fuel Loop	\$233.74	\$180.46	\$152.29	\$145.20	\$134.76
System Controllers	\$171.07	\$136.85	\$102.64	\$95.80	\$82.11
Sensors	\$28.00	\$28.00	\$28.00	\$28.00	\$28.00
Miscellaneous	\$305.05	\$172.38	\$151.94	\$145.88	\$139.15
Total BOP Cost	\$2,638.97	\$1,797.59	\$1,509.74	\$1 <mark>,</mark> 443.53	\$1,357.39
Total BOP Cost (\$/kW _{net})	\$32.99	\$22.47	\$18.87	\$18.04	\$16.97
Total BOP Cost (\$/kW _{gross})	\$30.24	\$20.60	\$17.30	\$16.54	\$15.55

• 2 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: System (2010 Technology)

			2010		
Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.91	87.91	87.91	87.91	87.91
Fuel Cell Stacks	\$11,556.43	\$3,663.54	\$2,867.17	\$2,567.50	\$2,025.76
Balance of Plant	\$6,106.09	\$3,438.13	\$2,726.86	\$2,478.12	\$1,968.41
System Assembly & Testing	\$157.17	\$112.84	\$110.91	\$111.05	\$110.67
Total System Cost	\$17,819.70	\$7,214.51	\$5,704.94	\$5,156.67	\$4,104.85
Total System Cost (\$/kW _{net})	\$222.75	\$90.18	\$71.31	\$64.46	\$51.31
Total System Cost (\$/kW _{gross})	\$202.71	\$82.07	\$64.90	\$58.66	\$46.69

• 4.4 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: System (2015 Technology)

			2015		
Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.27	87.27	87.27	87.27	87.27
Fuel Cell Stacks	\$10,491.30	\$3 <i>,</i> 130.97	\$2,429.21	\$2,170.63	\$1,706.73
Balance of Plant	\$2,638.97	\$1,797.59	\$1,509.74	\$1 <i>,</i> 443.53	\$1,357.39
System Assembly & Testing	\$130.55	\$93.72	\$92.12	\$92.24	\$91.92
Total System Cost	\$13,260.83	\$5,022.28	\$4,031.07	\$3,706.40	\$3,156.04
Total System Cost (\$/kW _{net})	\$165.76	\$62.78	\$50.39	\$46.33	\$39.45
Total System Cost (\$/kW _{gross})	\$151.94	\$57.55	\$46.19	\$42.47	\$36.16

• 4.2 to 1 cost reduction between low and high manufacturing rates

