

Fuel-Cell Fundamentals at Low and Subzero Temperatures

Adam Z. Weber

Lawrence Berkeley National Laboratory

Solicitation Partners:

United Technologies Research Center

Los Alamos National Laboratory

3M Company

The Pennsylvania State University

Project ID # FC 026

June 9, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project initiated FY09
 Start September 2009
 A vear project duration
- 4 year project duration
 End September 2013
- ♦ ~15% complete

Budget

- Total project funding
 DOE share: \$4,700k
 Contractor share: \$445k
 - TOTAL: \$5145k

✤ Funding for FY10

☞ LBNL	\$675k
Partners	\$979k
🖙 FY10 Total	\$1654k

Barriers

- 🏷 A. Durability
- ♦ C. Performance
- ♥ D. Water Transport within the Stack
- E. System Thermal and Water Management
- G. Start-up and Shut-down Time and Energy/Transient Operation

Partners

- Project lead: Lawrence Berkeley NL
- Direct collaboration with Industry, National Laboratories and University (see list)
- Other collaborations with material suppliers and those with unique diagnostic or modeling capabilities
- Solution with related project leads

Collaboration: Organizations/Partners

Lead

- Lawrence Berkeley National Laboratory: Adam Weber, John Newman, Clayton Radke, Alastair MacDowell
- Subcontractors
 - Science Strate S
 - Same Steinbach Steinbach Steinbach
 - United Technology Research Center: Michael Perry
 - Scheme State University: Chao-Yang Wang
- Other relationships (direct funded through other DOE projects)
 - ✤ Ion Power: Stephen Grot (Nafion[®] samples)
 - SGL Carbon Group: Peter Wilde (GDL and MPL samples)
 - NIST: Daniel Hussey, David Jacobson (neutron imaging of water)
 - Solution Content State State (Content State Stat
- Other relationships (no cost)
 - UTC Power: Tom Madden (freeze data)
 - University of Michigan: Massoud Kaviany (Nafion® molecular-dynamics simulations)

Relevance: Objectives

- Fundamental understanding of transport phenomena and water and thermal management at low and subzero temperatures using state-of-the-art materials

 - ✤ Enable optimization strategies to be developed to overcome observed bottlenecks
 - Operational
 - Material
- Elucidate the associated degradation mechanisms due to subzero operation
 - Enable mitigation strategies to be developed

Improved understanding will allow for the DOE targets to be met with regard to cold start, survivability, performance and cost

cccc

Synergistic effort of modeling and experimental characterization

- Multiscale, multiphysics continuum-based modeling
 - Develop, validate, and refine a series of models for cell performance including cold and cool operation, startup, and shutdown
- Separate the second second second stack properties and performance by the second secon
 - Measure critical properties including visualizing water and ice distributions
 - Utilize various assemblies and components to elucidate governing phenomena

Durability and degradation

- Elucidate and mitigate critical failure mechanisms related to cold and cool operation
- Experimentally observe and characterize failed cells

Approach: Workplan/Organization

			Fuel-Cell Fu	undamenta	als at Lo	w a	and Subz	zero Tei	mperatures	5 ——LB	NLMa	nagement
	L	BNL	LBNL, PSU	UTC		LAI	NL, LBNL		LBNL	L	ANL	_
	PSU			LANL, 3M			PSU		PSU	LBNL,	3M, PSU	
Task 1. Cold- start model		Task 2. D m	egradation odel	Task 3. Stack and cell characterization		l on	Task 4. Water imaging		Task 5. Model deployment		Task 6. Compon characterizatic	
Steady Star Simple 3-D e	y state rtup e stack iffects	Property o Mechan	degradation iical stress	Perfor evalu Stack s Failure	mance ation studies analysis		Neu X-r	tron ay	Cold- optimi Performa Failure m	start zation ince loss itigation	Men Cataly Diffusio	nbrane vst layer on media

LBNL

- Project management and coordination
- 🌭 Model development
- GDL and membrane characterization including x-ray tomography

LANL

- 🖖 Ex-situ component characterization
- 🌭 Single-cell durability tests
- 🌭 Neutron imaging

3M

✤ Material supplier and testing knowledge

UTRC

- Stack and cell parametric studies
- Identify and characterize failure mechanisms
- Seal-world guidance

PSU

- Help with x-ray studies and traditional, supported catalyst-layer diagnostics
- Develop 3-D scaling expressions and mechanical stress model

Other

Provide unique materials and diagnostics

Approach: FY10 Project Timeline

	N 4 4	N 42	N 40	
	M1	M2	M3	M4, M5, M6
	03/10	06/10	07/10	09/10
Begin	-		-	End
09/09				09/10

Major Milestones/Deliverables

10)

- M1: Baseline cell assembly (material set) defined. (Delayed, 40% complete)
- M2: Stack data and model agree (< 10% error) with respect to thermal and mass boundary conditions and cell position. (*On-track, 90% complete*)
- M3: Complete round-robin baseline cell testing of sub-scale cells under normal and low temperature conditions. *(Delayed, 30% complete)*
- M4: Diagnostic method to quantify ice formation in traditional catalyst layers developed. (Ontrack, 80% complete)
- M5: Simulation results showing the 2-D changes in water distribution and phase during shutdown conditions. (On-track, 80% complete)
- M6: Description and design of experimental setup to measure the kinetics of freeze in GDLs. *(On-track, 30% complete)*

Baseline Performance

- 3M has demonstrated much improved NSTF single-cell, low temperature performance due to improved GDLs and operating conditions
 - Sreatly improved limiting current density
- * Even if have poor single-cell performance, stack operation is quite different

Comparison of cold start at 10 mA/cm², –10°C between NSTF and supported-catalyst cells

- ♦ NSTF shows shorter time to failure
- Scharge passed corresponds to membrane uptake capacity
 - Water transferred to membrane and not out through diffusion medium
- Need more studies, especially examining durability with cycling

Modeling Cell Position

- * Utilize simple thermal cooldown model for the stack
 - ♦ Calibrate to experimental data
 - ✤ Temperature as a function of time becomes simulation boundary condition
 - Scan add in thermal mass and behavior of adjacent cells (e.g., current)

Water Movement: Shutdown

<u>Cell details</u>: Gore[®] 710 MEA, SGL 24BC GDLs 100% RH anode/cathode, 50/100 sccm H_2 /air Anode at 80°C, cathode cooling from 80 to 67°C

rrrrn

1MÌ

Anode DM stays wetter than cathode DM

MPL Capillary Pressure -Saturation Curves

rrrrrr

BERKELEY

Ш

LAB

- Custom made samples with fully penetrated MPLs
 - ✤ Minimize substrate effects
- Not much water is spontaneously ejected from MPL, similar to GDL behavior
 - 🌭 Neutral wettability
- Much more hydrophobic signature than GDL
- Complete filling of MPL was not achieved; much higher pressures are required
 - 2 atm (current limit) will fill down to
 ~ 300 nm hydrophobic pores

Visualizing Water Distributions

Designed setup to examine water distribution during capillary pressure – saturation measurements using x-ray microtomography at ALS

- Sub-micron spatial resolution with relatively good temporal resolution
- Issues remain of cell leakage and image segmentation

Freezing Fundamentals

- Use Dynamic Scanning
 Calorimetry (DSC) to determine
 water freeze rate in GDLs
 - Vacuum fill GDL and then place in DSC, run at 5 °C/min for several cycles
- Can model the freeze curve using nucleation and growth theory with overall heat balance
 - ✤ From nucleation theory:

$$\frac{d\varepsilon_{\rm ice}}{dt} = k(T)(1 - \varepsilon_{\rm ice}(t)) \qquad k(T) = \frac{k_b T}{3\pi\eta} \exp\left(\frac{-\Delta G^*(T)f(\theta)}{k_b T}\right) \qquad \Delta G^*(T) = \frac{16\pi\sigma^3}{3\Delta H_f^2} \frac{T_0^2}{(T - T_0)^2}$$

Incleation gives expected curve properties/values but growth expression is unknown

- ✤ Need more sophisticated model
- Simple rate expressions (e.g., linear or constant) cannot fit the curve shape or data

Teflon is a registered trademark of E.I. du Pont de Nemours and Company

DSC -Effect of Teflon® Addition

- As add Teflon[®], freeze peak shifts
 - Linear decrease in freezing temperature
 Depends on microstructure?
 - Relative change can be predicted from nucleation theory when accounting for varying surface energy in k(T)

$$\cos\theta = f_T \cos\theta_T + (1 - f_T) \cos\theta_c$$

- As add Teflon[®], second, lower temperature peak forms and grows in melting peak
 - Suggests some small microporosity
 - Agrees with capillary-pressure measurements

- Determine ice amount in supported catalyst layer by subzero cyclic voltammetry after isothermal starts
 14
- Total ice amount should be proportional to ECSA loss at very low temperature and high current density

♦ Water immediately freezes at reaction site

$$m_{H2O,CL} (\text{mg/cm}^2) = 0.059 + 0.018\Delta ECA (\%)$$

- After have correlation, use it to understand how much water is reaction-site-blocking ice in catalyst layer
 - Substantial amount of water moves out of catalyst layer
 - Occurs more at higher temperatures and lower current densities
 - Water probably moves to the membrane so initial hydration and storage capacity are key

Future Work

- Cell performance
 - Round-robin testing and definition of the baseline assembly
 - Testing of non-baseline assemblies
 - ✤ Isothermal and adiabatic starts including cycling studies for tracking durability
- Component characterization
 - Sonsolidate/measure membrane properties at subzero conditions
 - 🍫 Diffusion media
 - Provide the second state of the second stat
 - Capillary pressure saturation relationships
 - Impact of flowrate, temperature, injection sites (MPL analogs), materials
 - X-ray tomography for the water distribution
 - The Measure effective gas diffusion coefficient and relative permeability versus saturation
 - The Measure and model freeze rate and ice-front propagation as a function of saturation
- Modeling of shutdown, cold start, and isothermal start
- Stack studies for temperature distribution and performance characterization
- Understand and increase the operating window with thin-film catalyst layers

Relevance/Objective:

Help to enable, optimize, and mitigate failure in state-of-the-art materials through fundamental understanding of operation at low and subzero temperatures

Approach/Collaborations:

Use synergistic combination of cell, stack, and component diagnostic studies with advanced mathematical modeling at various locations (national laboratories, industry, and academia)

Technical Accomplishments:

- Preliminary baseline cell studies including isothermal starts
- Development of novel experimental diagnostics for CL ice, GDL freeze, and GDL liquid-related properties
- Solution with the second secon

✤ Future Work:

- Fundamental understanding of liquid-water movement, interactions, and freeze in fuel-cell components
- Senchmarking cell and stack performance and durability with different assemblies

Supplemental Slides

* Utilize various assemblies to elucidate governing and controlling phenomena

Material	Baseline	Alternative 1	Alternative 2
Membrane	3M 850 EW	Gore	3M variable thickness
Catalyst layer	NSTF PtCoMn	Supported carbon	NSTF advanced
GDL	Hydrophobized	SGL	MRC
MPL	Hydrophobic	Very hydrophobic	Mixed property
Flow field	Quad serpentine	Parallel channel	Single channel
Bipolar plate	Solid	WTP	Hybrid (one WTP)

Governing Water Equations

Energy balance

$$\overline{\rho C}_{P} \frac{\partial T}{\partial t} + \nabla \bullet (-\overline{k}_{T} \nabla T) = \Delta \hat{H}_{f} R_{f}$$

Darcy's law & material balance for water

$$\rho_{\rm L} \frac{\partial \mathcal{E}_{\rm L}}{\partial t} + \nabla \bullet \left(-\frac{\rho_{\rm L} k}{\eta_{\rm L}} \nabla p_{\rm L} \right) = -R_{\rm f}$$

Rate of freeze

$$R_{\rm f} = \rho_{\rm i} \frac{\partial \varepsilon_{\rm i}}{\partial t}$$

 $R_{\rm f} = k_{\rm f} (\varepsilon_{\rm L} - \varepsilon_{\rm L}^{*})$
Sum of volume fractions

$$\varepsilon_{\rm G} + \varepsilon_{\rm L} + \varepsilon_{\rm i} + \varepsilon_{\rm pm} = 1$$

Neglect

Vapor-phase transport (low *T*)

Convective heat transfer (Pe <<1) Phases (3) L liquid i ice G gas Unknowns (8) T, p_L $\varepsilon_G, \varepsilon_i, \varepsilon_L, \varepsilon_L^*$ R_f, k_r

Volume-fraction/capillary-pressure

$$\mathcal{E}_{L} = \mathcal{E}_{L}(p_{L} - p_{G}) = \mathcal{E}_{L}(p_{C})$$

Volume-fraction/temperature (below 0°C)
 $\mathcal{E}_{L}^{*} = \mathcal{E}_{L}^{*}(T)$

Relative perm./capillary-pressure

 $k_{\rm r} = k_{\rm r} (p_{\rm c})$

characteristic relationships

Multiphase Flow Model

residual saturation

Key assumptions

Hydrophilic and hydrophobic pore-size distributions (PSDs) PSDs can be unimodal or bimodal Modes follow a log-normal distribution Neglects temperature, hysteresis effects

$$\varepsilon_{\rm L}(p_{\rm C}) \qquad r_{\rm c} = -\frac{2\gamma_{GL}\cos\theta_{\rm c,L}}{p_{\rm c}} \implies S_{\rm h} = \sum_{k} \frac{f_{r,k}}{2} \left[1 + \mathcal{G}_{h} \operatorname{erf}\left(\frac{\ln r_{\rm c} - \ln r_{0,k}}{s_{\rm k}\sqrt{2}}\right) \right] \implies S_{L} = \frac{\varepsilon_{L}}{\varepsilon_{0}}$$

$$k_{\rm r} = \frac{S_{\rm e}^{2}}{2} \sum_{k} f_{r,k} \left[1 + \mathcal{G}_{h} \operatorname{erf}\left(\frac{\ln r_{\rm c} - \ln r_{0,k}}{s_{\rm k}\sqrt{2}} - s_{\rm k}\sqrt{2}\right) \right]$$

$$k_{\rm r}(p_{\rm c}) \qquad S_{e} = \frac{S_{\rm L} - S_{\rm L}^{0}}{1 - S_{\rm L}^{0}} \qquad \text{effective saturation}$$

$$S_{\rm L}^{0} = -5.3202\varepsilon_{0}^{5} + 17.062\varepsilon_{0}^{4} - 21.706\varepsilon_{0}^{3} + 13.692\varepsilon_{0}^{2} - 4.816\varepsilon_{0} + 0.9989$$

$$\varepsilon_{\rm L}^*(T) \qquad r_{\rm c}^* = \frac{-2\gamma_{iL}T_{\rm m}\cos\theta_{\rm c,i}}{\rho_i\Delta\hat{H}_{\rm f}(T_{\rm m}-T)} \implies S_{\rm h}^* = \sum_k \frac{f_{r,k}}{2} \left[1 + \mathcal{G}_{\rm h} \mathrm{erf}\left(\frac{\mathrm{ln}r_{\rm c}^* - \mathrm{ln}r_{\rm 0,k}}{s_k\sqrt{2}}\right) \right] \implies S_L^* = \frac{\varepsilon_L^*}{\varepsilon_0}$$

Nomenclature

- *h* philic (HI) or phobic (HO)
- k phase or distribution (1 or 2)

PSD characteristics $f_{r,k}$ fraction in distribution k characteristic radius $r_{0,k}$ S_k characteristic spread $\theta_{c,L}$ contact angle, liquid $\theta_{c,i}$ contact angle, ice other $\Delta \hat{H_{f}}$ specific heat of fusion T_m melting point of bulk water ϑ_{h} equal to 1 for HI, -1 for HO γ_{kL} surface energy, k = G or i ρ_k density of phase k

Adapted from: A. Z. Weber, R. M. Darling, and J. Newman, J. Electrochem. Soc., 151, A1715 (2004).

Project Timeline

Main tasks

Performance modeling

- Durability modeling
- Cell and stack characterization
- 🏷 Imaging
- Mitigation and optimization
- Component characterization

Task				Year / Quarter													
	1				2				3				4				
#	Name	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.1	Steady-state performance model						3										
1.2	Startup model							3			-[5		$-\sqrt{1}$	1		
1.3	Simple stack model				_[1]											
1.4	Shutdown model									5]							
1.5	Three-dimensional modeling												L E				
2.1	Property-change degradation model														12		
2.2	Mechanical stress model												للم	<u>,</u>			
3.1	Performance evaluation							3			Ţ]					
3.2	Stack studies				Ĺ	1											
3.3	Failure analysis										5	7					1
4.1	Neutron imaging							3/\4	4								
4.2	X-ray tomography and radiography								4								
5.1	Cold-start optimization																_
5.2	Understanding performance losses																-
5.3	Failure mitigation																-
6.1	Membrane characterization					2]											
6.2	Catalyst-layer characterization						3							10			
6.3	Diffusion-media characterization						3	3						10			
	Legend: 1 Milest	one/	Deliv	vera	ble	1	Go/	/No-	Go	deci	sion						