SAND2010-2632C

Development and Validation of a Two-phase, Three-dimensional Model for PEM Fuel Cells

Ken S. Chen (PI)

Sandia National Laboratories June 9, 2010

FC027

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project was started on 10/1/09
 DOE Kickoff meeting held 9/30-10/1/09
- Project will end on 9/30/13
- Percent complete: ~13%

Budget

- Total project funding (over 4 years)
 - DOE share: \$4,292,000
 - Contractor share: \$1,200,000
- Funding received in FY09: \$816,000
- Funding for FY10: \$244,000

Barriers

- Barriers addressed
 - Performance
 - Cost
 - Durability

The validated PEM^{*} fuel cell model can be employed to improve and optimize the design and operation of PEM fuel cells and thus address these barriers.

Partners

 Direct collaborations with Industry, University and other National Labs:

Ford, Ballard Penn State University LANL, LBNL.

• Project lead: Sandia National Labs

- To develop and validate a two-phase, three-dimensional transport model for simulating PEM fuel cell performance under a wide range of operating conditions.
- To apply the validated PEM^{*} fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology.
- The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: i) address the technical barriers on performance, cost, and durability; and ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

Approach

Our approach is both computational and experimental:

- Numerically, develop a two-phase, 3-D, transport model for simulating PEM fuel cell performance under a wide range of operating conditions.
- Experimentally, measure model-input parameters and generate model-validation data.
- Perform model validation using experimental data available from the literature and those generated from team members.
- Apply the validated transport model to identify rate-limiting steps and develop recommendations for improvements.

A staged approach will be adopted in model development and validation: Single phase (dry) \rightarrow Partially two-phase (dry-to-wet transition) \rightarrow Fully two phase (wet)

Approach:

FY10 Milestones and Go/no-go decision and Their Current Status

Month/Year	Description of Milestone or Go/No-Go Decision
September/2010	Develop a 3-D, partially two-phase, single-cell model. Status: ~ 50% complete
September/2010	Measure model-input parameters and generate model-validation data for single-phase operating regime. Status: ~ 50% complete
September/2010	Go/no-go: determine whether or not we should proceed to develop a 3-D, fully two-phase, single-cell model. Status: not yet time to decide

Governing Equations In Sandia Laboratories

(Based on the conservations of mass, momentum, energy, species, and charge)

• Mass:
$$\nabla \cdot (\rho \vec{u}) = S_m$$

• Momentum:
$$\frac{1}{\varepsilon^2} \nabla \cdot (\rho \vec{u} \vec{u}) = -\nabla P - \nabla \cdot (\rho \tau) + \frac{\nu}{K} (\rho \vec{u})$$

Energy:

Species:
$$\nabla \cdot (\gamma_c \vec{u} C^k) =$$

$$\nabla \cdot (\gamma_T \rho C_p \vec{u} T) = \nabla \cdot (k_{eff} \nabla T) + S_T$$
$$\nabla \cdot (\gamma_c \vec{u} C^k) = \nabla \cdot (D_g^{k, eff} \nabla C_g^k) - \nabla \cdot [(\frac{m f_l^k}{M^k} - \frac{C_g^k}{\rho_s}) \vec{j}_l] + S_c$$

- Charge (Electrons): $0 = \nabla$
- $0 = \nabla \cdot (\sigma^{eff} \nabla \Phi_s) + S_{\Phi_s}$
- Charge (Protons): $0 = \nabla \cdot (k^{eff} \nabla \Phi_e) + S_{\Phi_e}$

References:

- 1) K. S. Chen, B. Carnes, F. Jiang, G. Luo, and C.-Y. Wang, "Toward developing a computational capability for PEM fuel cell design and optimization", ASME Proceedings of FuelCell2010, paper # FuelCell2010–33037 (2010).
- 2) Y. Wang and C. Y. Wang, "A Non-isothermal, Two-phase Model for Polymer Electrolyte Fuel Cells", JES, 153, A1193-1200 (2006).
- 3) U. Pasaogullari and C. Y. Wang, "Two-phase modeling and flooding prediction of Polymer Electrolyte Fuel Cells", JES, 152, A380 (2005).

Enabling Advanced Fuel Cell Sandia National Laboratories Design Studies Using DAKOTA

- DAKOTA is a toolkit for design, optimization, and uncertainty quantification developed and being enhanced by Sandia National Labs
- We implemented a script to allow DAKOTA to run the fuel cell model (implemented in FLUENT using user defined functions or UDFs).
- Each evaluation
 - updates parameters,
 - rebuilds the UDF lib,
 - runs the model, and
 - extracts outputs (I,V)
- Parameter sensitivities
 - from finite differences
- Reuse of previous state
 - Improves robustness

Technical Accomplishments and Progress: Sandia Example of model prediction – polarization curves

Computed Effect of Operating Temperature on PEM Fuel Cell Performance

Computed Effect of Cathode RH on PEM Fuel Cell Performance

Thickness (x direction)		
Membrane: 30 micron	CL: 10 micron	
MPL: 40 micron	GDL: 160 micror	
GC: 1mm	Land: 0.5mm	
Cell length (y direction): 0.3 m		
Channel height (z direction): 0.75mm		
Land height (z direction): 0.75mm		
Coolant channel: 0.5×0.5 mm ²		

- Cell voltage or performance increases with operating temperature.
- Cell voltage increases with cathode RH when current density is relatively low.
- Cell voltage decreases with cathode RH when current density is sufficiently high.

• Cell voltage increases with increasing cathode stoichiometric flow ratio.

Examples of model prediction – 3D contours plots

Technical Accomplishments and Progress: kational Laboratories Sandia National Laboratories

Examples of model prediction – 2-D contours plots

Temperature contours on Section A

A/m² Local current density at Section B (Air and coolant flow from left to right; whereas H2 flows from right to left)

Water content (λ) on Section B (Air and coolant flow from left to right; whereas H2 flows from right to left)

PENNSTATE

× 5,00

• Quantitative information on temperature, local current density, and water content (λ), etc. can be readily obtained from model prediction.

Technical Accomplishments and Progress: Example of model prediction – MPL effect

Technical Accomplishments and Progress:

Sandia

1500

8 5 5

National Laboratories

Pore-network modeling of water transport in cathode MPL/GD

• Pore-network modeling helps elucidate fundamental physics, e.g., saturation discontinuity at MPL/GDL interface!

Technical Accomplishments and Progress: 📊 Sandia

Example of model prediction – PEM fuel cell with zigzag flow field

Technical Accomplishments and Progress: Sandia Example of Design Studies using the coupled computational capability Optimizing RH at Anode/Cathode Inlet

- DAKOTA can also compute sensitivity of outputs (power or voltage) to
 - operating conditions temperature, RH, stoich, pressure
 - model parameters for use in calibration with data
- Performance optimization: find RH values for optimal power density

Technical Accomplishments and Progress: Sandia Predicting Membrane Interfacial Resistance

 Calculated mass-transfer coefficient for water as a function of RH*

$$N = \frac{\Delta a}{R} = \frac{\Delta a}{\frac{t}{\alpha} + \frac{1}{2k}}$$

- Liquid and membrane interfaces have no resistance
- Resistance believed to be caused by surface reorganization

*B. Kientiz et al., *J. Fuel Cell Sci. Tech.,* in press Work partially funded by Toyota Motor Corporation

- Impact of resistance
 - Flatten water profiles in the membrane
 - Appreciable for thin, dry conditions
- Future Work
 - Need to implement in CL and cell models
 - Add similar resistances for oxygen and other species

Technical Accomplishments and Progress: Examples of GDL/MPL pore size measurements via porosimetry

Examples of cell performance measurement – polarization curves Sandia

Cell Temperature Effect on Cell Performance

Polarization Curves at Different Cell Segments

• Current density spread was less when GDL was not segmented.

Mass transport limitation worsens at later segments.

Effect of GDL Material on Cell Performance

EST. 1943

Collaborations: Organizations/Partners

Model Development (including numerical implementation), Testing, and Validation:

- Sandia National Laboratories (Ken Chen: kschen@sandia.gov) Participants: Ken Chen, Brian Carnes, Jay Keller, Marcina Moreno Roles: project lead; model development, integration, testing, validation, dissemination
- PENNSTATE The Pennsylvania State University (Chao-Yang Wang: cxw31@psu.edu) Participants: Chao-Yang Wang, Fangming Jiang, Gang Luo, Yan Ji, Chris Shaffer Roles: model development, validation, and dissemination; numerical implementation
- Lawrence Berkeley Lab (Adam Weber: azweber@lbl.gov; directly funded by DOE) Participants: Adam Weber Roles: Sub-model development (e.g., membrane, GDL/GFC interface), model dissemination

Model-parameter measurements, Data for Model Validation, Guidance/Applications:

- Los Alamos National Lab (Rod Borup: borup@lanl.gov; directly funded by DOE)
- Ford Motor Company (Atul Kumar: akumar56@ford.com; participate on "in-kind" basis)
- Ballard Power Systems (Patricia Chong: patricia.chong@ballard.com)

Los Alamos

Los Alamos Role

(Dusan Spernjak, John Davey, R. Mukundan, Rod Borup)

- Experimental data for model validation
 - Performance, polarization curves, impedance
 - Segmented cell measurements
- Material characterization
 - GDLs
 - Pore-size distributions
 - GDL tomography by imaging (X-ray tomography etc.)
 - Surface energy
 - Dispersive energy vs. specific energy
 - Material hydrophobicity
 - Neutron imaging of water profiles

2010 DOE Annual Merit Review

Project: Development and Validation of a Two-Phase, Three-Dimensional Model for PEM Fuel Cells

• Ford's Role in this Joint Project

- Ford is participating in the project as "in-kind" basis
- Ford will provide guidance on recommendations to improve rate limiting steps related to transport of gaseous species, liquid water, H⁺, e⁻, and heat
- Ford will support providing range of fuel cell operating conditions pertinent to automotive applications to validate the above recommendations
- In addition, with its expertise in large scale CFD modeling, Ford will advice on as-needed basis towards this project

Atul Kumar, Shinichi Hirano / Fuel Cell & H₂ Storage Research / Research & Advanced Engineering

Ballard's Role and Deliverables

(David Harvey, Patricia Chong)

Model Input Parameters	e.g: Material properties, Structural properties, Flow Field Dimensions
Model Validation Data	e.g: Current Map, Temperature Map, Half Cell Potential, Polarization
Operational Parameters	e.g: RH, Temperature, Pressure, Fuel Composition

An Example of Model Validation Data being Provided by Ballard:

Current Density Profile along the channel length in an 12 kW stack

Future Work

PEMFC Model Development, Testing, and Validation

- Complete the development of a 3-D, partially two-phase, single-cell model. (including the incorporation of the microporous layer in anode)
- Complete extensive testing of the 3-D, partially two-phase, single-cell model.
- Perform model validation for single-phase regime, then partially two-phase, ...
- Further develop the coupled PEMFC model/DAKOTA capability for performing parameter estimation and uncertainty quantification.
- Develop a sub-model for specifying physics-based boundary conditions at the GDL/channel interface (to enable the proper account of water flux).

Model-parameter Measurements, Model-validation Data Generation

- Complete measurements of model-input parameters and generation of model-validation data in the single-phase operating regime.
- Initiate and perform measurements of model-input parameters and generation of model-validation data in partially two-phase operating regime.

Summary of **F** Technical Accomplishments

- A single-phase, three-dimensional, single-cell model was developed and significant progress was made toward meeting the year-end milestone ("Develop a three-dimensional, partially two-phase, single-cell model").
- The present PEMFC model was coupled with DAKOTA* for performing efficient parametric, design and optimization studies.
- Capabilities of the present PEMFC model were demonstrated in case studies by computing effects of operating temperature, cathode RH, back-pressure, and cathode stoichiometric flow ratio on PEM fuel cell performance.
- Utility of the coupled PEMFC model/DAKOTA capability was also demonstrated.
- Capability for simulating cathode MPL effect was implemented and demonstrated.
- The present PEMFC model was used to simulate a PEMFC with zigzag flowfield.
- A sub-model for membrane interfacial resistance was developed and demonstrated.
- Pore size distributions of GDLs w/ and w/o MPL were measured via porosimetry.
- Polarization curves were obtained for different temperature, RH, and cell segments.
- 2 journal publications, 2 proceeding papers, and 3 conference presentations were generated so far. A team member also served as co-editor of a book on PEMFCs.
 - * DAKOTA refers to a toolkit for design, optimization, and uncertainty quantification developed and being enhanced by Sandia National Laboratories

- U. S. DOE EERE Fuel Cell Technologies Program for financial support of this work
- Program Manager: Jason Marcinkoski

Supplemental Slides

Future work: parameter estimation

- Motivation:
 - Many PEMFC components have variability
 - Different membranes, catalyst loadings, GDL/MPL preparation
 - There is inherent variability in model parameters
 - Measurement of some parameters are extremely challenging, if not possible.
 - From previous studies* we learned:
 - Sensitivity analysis (SA) can help match data sets to parameters
 - Bounds are needed on parameters to maintain plausibility
 - Parameter estimation cannot solve model limitations
- Approach:
 - Use the coupled PEMFC model/DAKOTA capability to estimate various parameters using experimental data:
 - IV curves, local data (current, H2, O2, Temp)
 - Parameters of interest include:
 - Membrane conductivity, reaction rates, permeability, porosity, two-phase flow parameters, boundary conditions, etc.
 - A nonlinear least squares approach from DAKOTA will be used

* B. Carnes and N. Djilali, "Systematic parameter estimation for PEM fuel cell models," J. Power Sources, 144 (1), 83-93 (2005)

Future work:

Uncertainty Quantification and Validation

- Motivation:
 - There is inherent uncertainty in many model parameters and data
 - Some model parameters are difficult/expensive to estimate accurately
 - When model parameter uncertainty can be characterized
 - Bounding intervals
 - Probability distributions
 - we can propagate the uncertainty through the model into the responses
 - Responses may include:
 - IV curves, liquid water concentration, localized data
- Approach:
 - Use the coupled PEMFC model/DAKOTA capability to quantify various uncertainties
 - Methods from DAKOTA for uncertainty propagation:
 - Monte Carlo/Latin Hypercube Sampling
 - Generalized Polynomial Chaos expansions
- Validation will be based on
 - Comparing nominal model response to data (point to point comparison)
 - Incorporating uncertainty of responses and data (statistical comparison)

Future Work: Gas Channel/GDL The Sandia Boundary Condition

- The boundary condition at the gas/channel interface can control the liquid saturation in the GDL
 - Impact breakthrough pressure
 - Formation of droplets cause oscillation in the capillary pressure

- Films may also cause more severe mass-transfer limitations
- Approach
 - Model capillary-pressure oscillations and droplet shear from surface
 - Account for local impact of ribs / channels and the effect of the rib properties
 - Wicking along the rib
 - Do complimentary experimental studies to understand droplet growth and removal mechanisms

Segmented Cell Measurements: The Sandia Spatial Model Validation

Cathode Flow-Field Segmented Geometry (6-Parallel Serpentine)

- Validate transport models spatially in terms of performance and transport losses (AC Impedance)
- Correlation of polarization and AC impedance data for better understanding of in-plane mass-transport.
- Compare varying cathode GDL performance at different positions within a single cell.
- Investigation of the effects of varying GDL properties.

