

Advanced Materials for RSOFC Dual Operation with Low Degradation

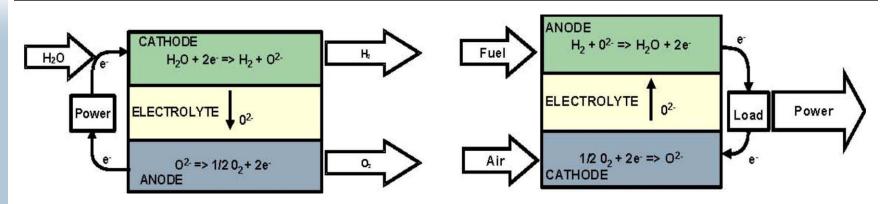
Randy Petri (PI) Eric Tang Versa Power Systems 2010 DOE Hydrogen Program Review June 11, 2010 Washington, DC

Project ID: FC042

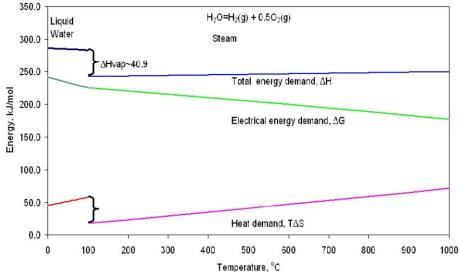
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

- Timeline
 - Start: September 2009
 - End: September 2011
 - 50% Completed (Ahead of Schedule)

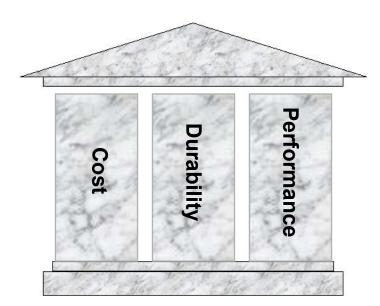

- Budget
 - \$1,994,618 total project
 - \$1,595,694 DOE share
 - \$398,924 VPS share
 - No funding for FY09
 - \$1,162,686 for FY10

- Barriers
 - G. Capital cost
 - H. System efficiency
 - I. Grid electricity emissions (for distributed power)
 - J. Renewable electricity generation integration (for central power)
- Partners
 - Boeing
 - SECA
 - Idaho National Laboratory (INL) in future work



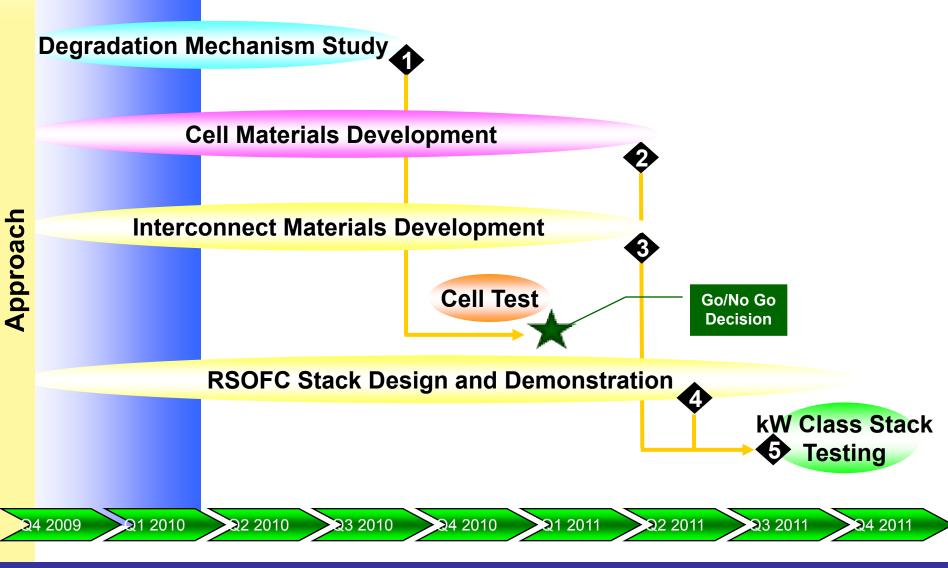
Relevance

Project Background


- Reversible Solid Oxide Fuel Cells (RSOFCs) are energy conversion devices. They are capable of operating in both power generation mode (SOFC) and electrolysis mode (SOEC)
- RSOFC can integrate renewable production of electricity and hydrogen when power generation and steam electrolysis are coupled in a system, which can turn intermittent solar and wind energy into "firm power"

Project Objectives

- To advance RSOFC cell stack technology in the areas of endurance and performance through RSOFC materials development and reversible stack design
- To meet the following performance targets in a kW-class RSOFC stack demonstration:
 - RSOFC dual mode operation of 1500 hours with more than ten SOFC/SOEC transitions
 - Grid Emissions (I), Renewables (J)
 - Operating current density of more than 300 mA/cm² in both SOFC and SOEC modes
 - Cost (G), Efficiency (H)
 - Overall decay rate of less than 4% per 1000 hours of operation
 - Cost (G), Efficiency (H)



How Objectives Address Barriers

	Hurdle	Targets
Endurance	 Performance decay in SOEC mode is too high for RSOFC system development Materials system is not stable at SOEC operating mode with a decay rate more than 20% per 1000 hours Performance decay during transient between SOEC and SOFC is high 	 Reducing decay to under 4% per 1000 hours for both SOFC and SOEC Meet endurance target in a 1000 hour single cell test (month 15) Meet endurance target in a 1500 hours kW-class stack (month 24) Demonstrate transient capability with more than 10 FC/EC transients
Performance	 Performance in SOEC mode is not sufficient for viable RSOFC system development ASR is more than 1.0 Ω-cm² at 750 C and below in SOEC mode 	 Improve performance at 750 C in SOEC mode by reducing ASR to less than 0.3 Ω-cm² Meet performance technical target in a single cell test (month 15) Operate kW-class RSOFC stack at more than 300 mA/cm²

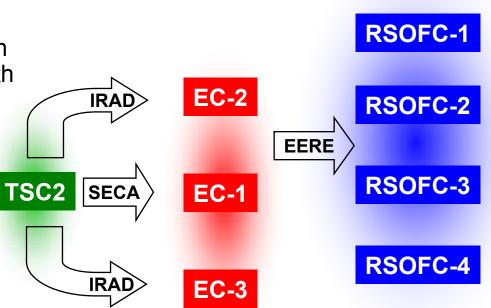
Project Timeline, Milestones, Decision Points

- At month 15, a go/no-go will be made based on 1000 hour single cell test relative to the following performance and endurance metrics:
 - RSOFC area specific resistance of less than 0.3 Ω -cm² in both SOFC and SOEC operating modes
 - Operating current density of more than 300 mA/cm² in both SOFC and SOEC modes
 - Overall decay rate of less than 4% per 1000 hours of operation
- Five technical milestones will be tracked and measured throughout the project

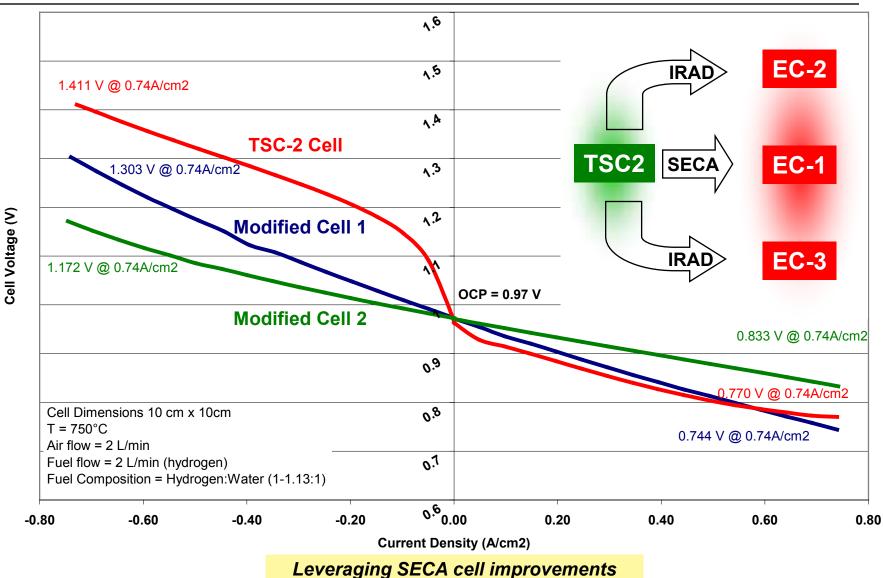
Systems

 Task 1: Completion of degradation mechanisms study of baseline cells (4th quarter)

- Task 2: Completion of RSOFC cell materials selection (6th quarter)
- Task 3: Completion of RSOFC interconnect materials selection (6th quarter)

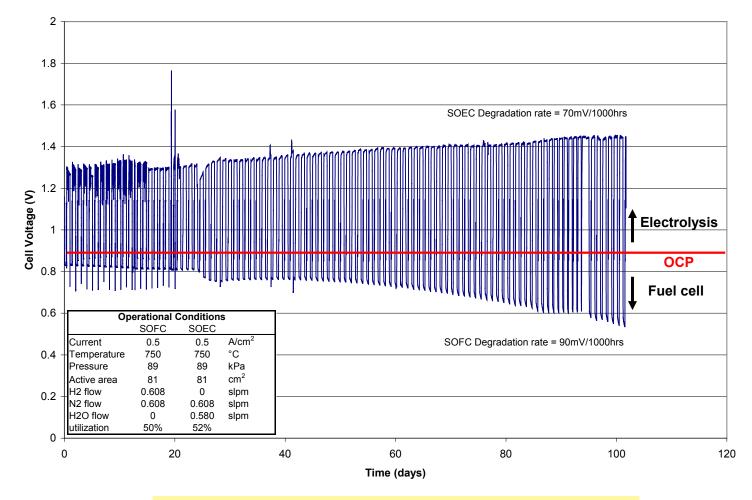


- Task 4: Completion of RSOFC stack design (7th quarter)
- Task 4: Starting end of the project RSOFC stack metrics test (8th quarter)



RSOFC Development Path

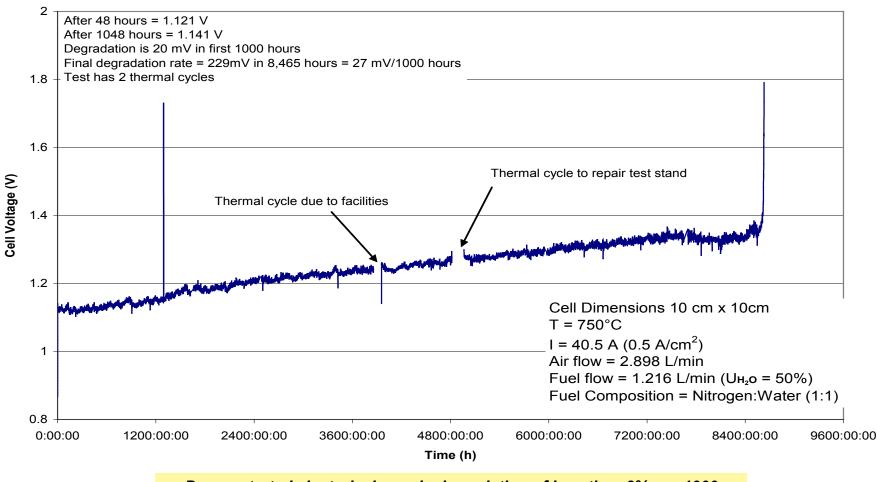
- Building on VPS' strong SOFC cell and stack baseline
- Leveraging cell and stack advancements from the DOE-SECA SOFC project
- Addressing RSOFC degradation mechanisms in SOEC mode with innovative cell and stack repeat unit configurations
- Conducting parallel materials development activities and integrating them with cell production technology development
- Completing RSOFC stack and process designs to address durability, performance, and cost in both SOFC and SOEC operating modes



Single Cell Electrolysis/Fuel Cell Cycling Test

GLOB 101659 - SOFC-SOEC Cycles TSC-2 Cell

Demonstrated 100 electrolysis/fuel cell mode cycles

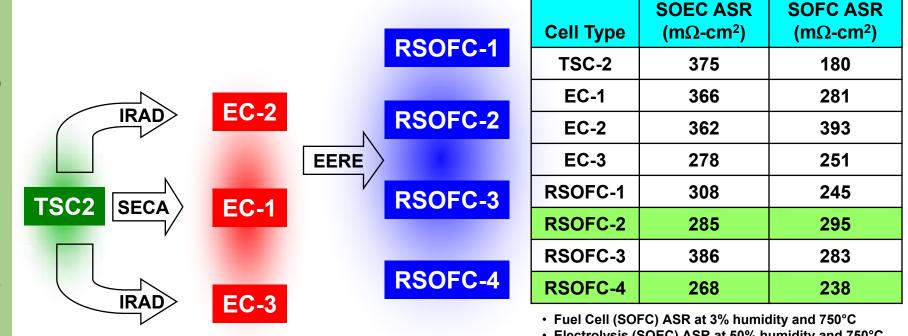

Progress

and

Technical Accomplishments

Steady-State Electrolysis Test

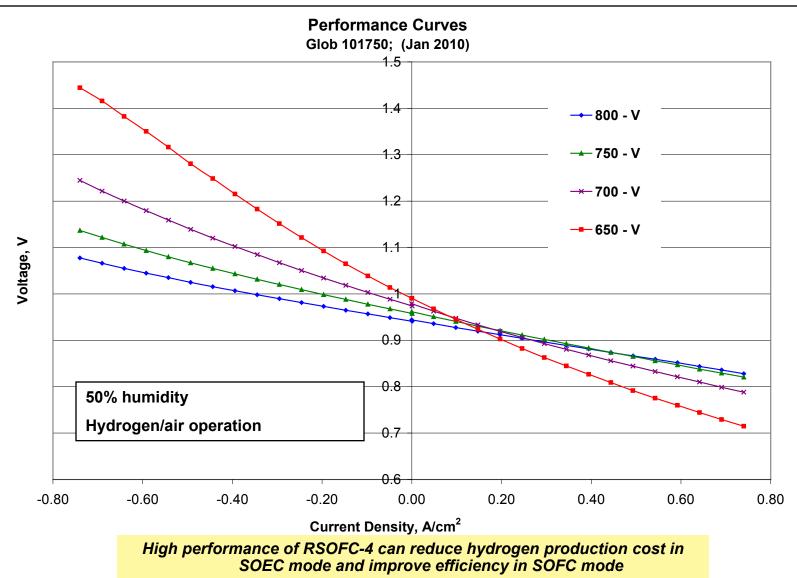
GLOB 101695: Steady-state electrolysis hold (EC-1 modified cathode cell)



Demonstrated electrolysis mode degradation of less than 3% per 1000 hours for over 8000 hours (one year)

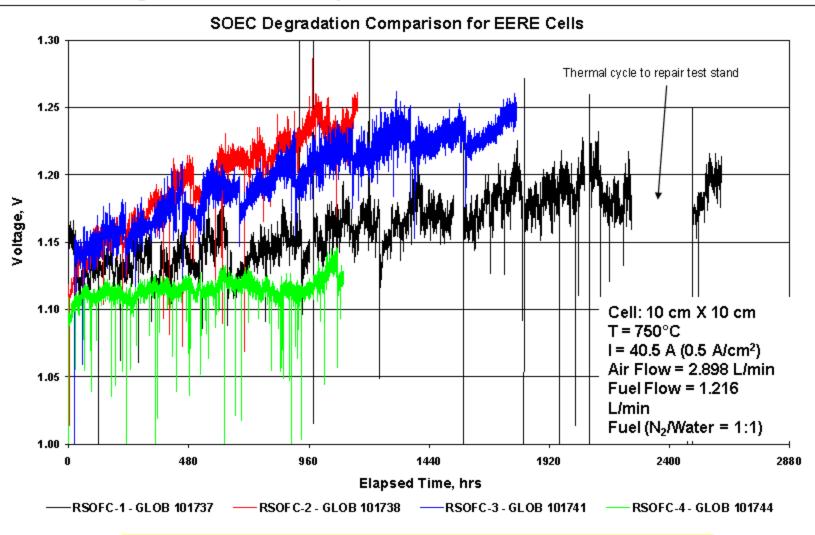
2010 DOE Hydrogen Program Review

RSOFC Cell Performance Development Status



Electrolysis (SOEC) ASR at 50% humidity and 750°C

Both RSOFC-2 and RSOFC-4 passed the performance criteria of ASR less than 300 m Ω -cm² in both SOFC and SOEC modes

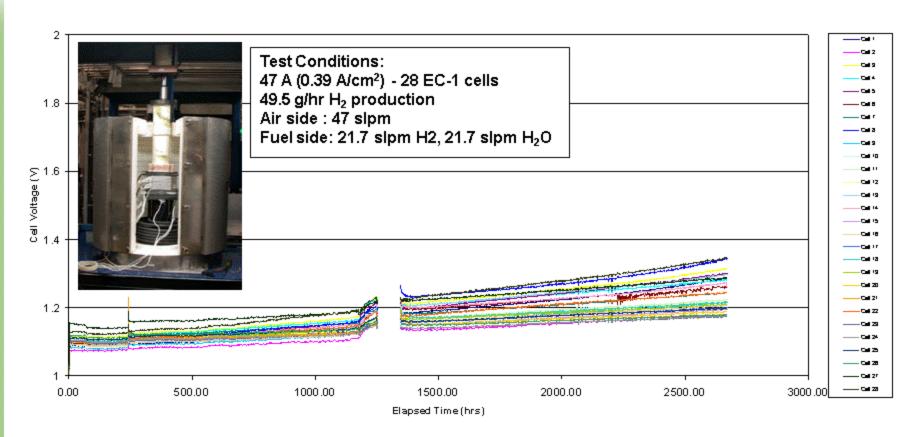


RSOFC-4 Cell Performance

RSOFC Long Term Electrolysis Tests

Conducting long term steady-state SOEC tests to validate the endurance characteristics of the RSOFC cells

Electrolysis Degradation: Status


Summary of Cell Degradation Rates under Fixed Electrolysis Operation

				Electrolysis (SOEC) Degradation		
		RSOFC-1	Cell Type	mV / 1000 hrs	% / 1000 hrs	Duration (hrs)
	EC-2	_	Target	< 50	< 4	> 1000
IRAD		RSOFC-2	TSC-2	91	7.3	2893
			EC-1	27	2.2	8465
	EC-1	RSOFC-3	EC-2	~0	~0	2400
	EC-3		EC-3	72	5.8	1792
			RSOFC-1	< 30	< 2.4	2248
IRAD		RSOFC-4	RSOFC-2	120	9.6	1152
			RSOFC-3	62	5.0	1789
			RSOFC-4	25	2.4	1096

RSOFC-4 has passed the degradation criteria of less than 4%/1000 hours in SOEC mode as well as performance criteria

RSOFC Stack Development

Conducted long term electrolysis test on a kW-class RSOFC stack and demonstrated degradation rate of 3.8% per 1000 hours for over 2500 hours

Collaborations

- Boeing
 - Collaborated on and funded initial RSOFC development work through both Boeing and DARPA funded efforts
 - Anticipate follow-on DARPA award this calendar year
- SECA
 - As subcontractor to FuelCell Energy in SECA, VPS has advanced SOFC cell and stack technology which has been applied in this program
- ► INL
 - Eventual integration of SOEC technology for hydrogen production with Next Generation High Temperature Nuclear Reactor
 - Demonstrate suitability of VPS SOEC technology for this application at the kW-class stack level

Proposed Future Work

- ► FY2010
 - Complete degradation mechanism study
 - Conduct single cell tests at various operating conditions (temperature, current, steam utilization)
 - Conduct post test analysis with detailed microscopic analysis (TEM, SEM and EDX)
 - Complete test facility improvements
 - Potential Additional Scope: Conduct additional stack testing early in the project

FY2011

- Complete Go/No-go decision point test
- Complete cell and interconnect materials development
- Down select material systems for RSOFC stack development
- Complete the final project metric test with kW-class RSOFC stack
- Potential Additional Scope: Explore the option of developing larger (up to 20 kW) stack for RSOFC operation

Summary

Relevance	RSOFC can integrate renewable production of electricity and hydrogen when power generation and steam electrolysis are coupled in a system, which can turn intermittent solar and wind energy into "firm power"
Approach	Developing high performance and low degradation RSOFC cell and stack technology is critical for the reversible SOFC/SOEC system
Technical Progress	 Two types of RSOFC cells developed have met the electrochemical performance target and RSOFC-4 met both performance and degradation criteria A steady-state single cell test has run in electrolysis for one year with a degradation rate of less than 3% per 1000 hours A baseline 28-cell stack (kW-class) test has run in electrolysis for over 2500 hours at a 3.8% per 1000 hours degradation rate
Collaboration	Boeing/DARPA, SECA, and INL
Proposed Future Research	In addition to executing the original project scope, additional development activities are under consideration to accelerate RSOFC stack development

Supplemental Slides

RSOFC Cell Development: Operating Envelope Investigation

Summary of Cell ASR under SOFC and SOEC Operation

Cell Type	Electrolysis (SOEC) ASR (mΩ-cm²) at 50% humidity		Fuel Cell (SOFC) ASR (mΩ-cm²) at 3% humidity					
	650°C	700°C	750°C	800°C	650°C	700°C	750°C	800°C
Target	< 300			<300				
TSC-2	687	504	375	302	657	293	180	161
EC-1	954	587	366	266	474	350	281	241
EC-2		526	362	284		521	393	374
EC-3	726	422	278	221	425	311	251	218
RSOFC-1	784	466	308	245	405	298	245	214
RSOFC-2	754	422	285	229	502	365	295	254
RSOFC-3	1003	623	386	279	495	359	283	238
RSOFC-4	711	413	268	203	397	293	238	207