### 2010 U.S. DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

#### **Engineered Nano-scale Ceramic Supports for PEM Fuel Cells**

## Project ID # FC044

DOE Program Manager : Nancy Garland

Principal Investigator/Presenter : Eric L. Brosha

Karen Blackmore, Eric L. Brosha, Anthony Burrell, Neil Henson, Jonathan Phillips, and Tommy Rockward

Los Alamos National Laboratory

June 7-11, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information.



Operated by Los Alamos National Security, LLC for NNSA

Fuel Cell Technologies

MS

# **Overview**

### Timeline

- Project start : September 2009
- Project end : September 2013
- Percent complete (as of June 2010) : 18%

## Budget

- Total project funding : \$500K/yr
  - DOE \$425K
  - UNM (sub) \$75K
- Funding Received 2009: \$345K
- Funding Received 2010: \$405K

## Technical Barriers Addressed<sup>2</sup>

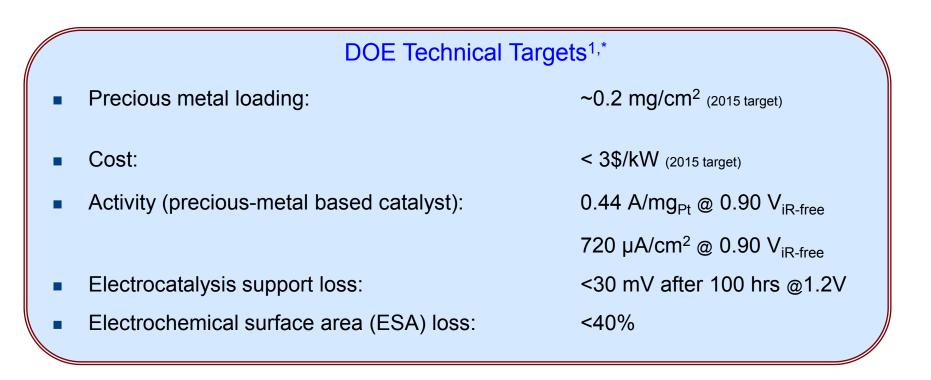
- A. Durability (Pt sintering, dissolution, corrosion loss, effects from load-cycling & high potential)
- B. Cost (Better Pt utilization balanced by cost difference of new support)
- c. Electrode Performance (Pt sintering, corrosion loss, and loss of ESA)

## Partners

- LANL (Project Lead)
- University of New Mexico
- ORNL (no-cost partner)

2. (Multi-Year Research, Development and Demonstration Plan, Section 3.4.4 "Technical Challenges") \*From http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf






- Project Objective : Develop a ceramic alternative to carbon material supports for a polymer electrolyte fuel cell cathode.
- Ceramic support must :
  - have enhanced resistance to corrosion and Pt coalescence.
  - preserve positive attributes of carbon such as cost, surface area, and conductivity.
  - be compatible with present MEA architecture & preparation methods.
- Materials properties goals include:
  - high surface area
  - high Pt utilization
  - enhanced Pt–support interaction
  - adequate electronic conductivity
  - resistance to corrosion
  - synthesis method / procedure amendable to scale-up
  - reasonable synthesis costs



Fuel Cell Technologies





 Technical performance and lifetime targets now in place for Pt/C PEMFC catalysts naturally extend to Pt/ceramic catalysts.



1. (Multi-Year Research, Development and Demonstration Plan, Table 3.4.12) \*From http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf

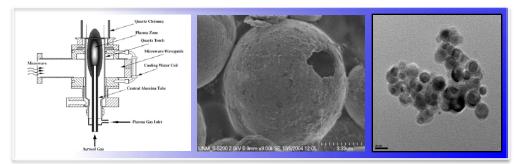


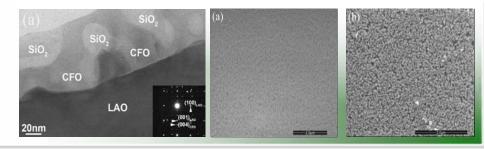
#### Rare-earth hexaborides

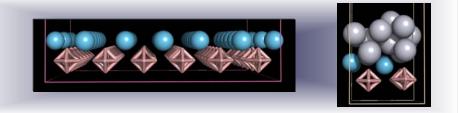
- High electronic conductivity, refractory, stable in acid media
- Unique property first discovered by LANL : spontaneous noble metal deposition
- Transition metal nitrides
  - Corrosion resistance, high electronic conductivity, catalytic properties
- Sub-stoichiometric titania (TiO<sub>2-x</sub>) : Ti<sub>4</sub>O<sub>7</sub> (Magnéli phase)
  - High electronic conductivity, refractory, stable in acid media
  - Reports of strong metal-support interactions with noble metals
  - Resistance to oxidation
  - Demonstrated electro-catalytic activity for both hydrogen and oxygen / Pt
- Conductive metal oxides : NbO<sub>2</sub> and RuO<sub>2</sub> (UNM)
  - Demonstrated corrosion stability (UNM)
  - Highly dispersed Pt on conductive mesoporous spheres can be synthesized in a single step process (UNM)

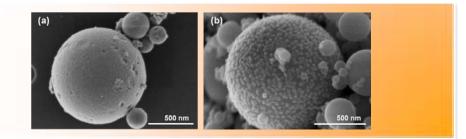


Fuel Cell Technologies





# **Approach: Experimental Synthesis Methods**


- Microwave aerosol-through-plasma (ATP) torch synthesis of (RE)B<sub>6</sub> and TiO<sub>2-x</sub>
  - Utilize flow of plasma gas through plasma to create high temperature/short contact times
  - T > 3500K, t < 0.1 sec
  - Plasma gas mixtures: Air, Ar, O<sub>2</sub>, N<sub>2</sub> and H<sub>2</sub>
- Polymer assisted deposition (PAD) for (RE)B<sub>6</sub> and nitrides.
  - PAD precursor routes to produce ceramic materials with high surface area.
  - Films (CVs), powders (bulk catalysts, MEA prep)
- Theory/Modeling support to aid experimental effort to provide data on stability in absence of Pt particles
  - Surface/cluster models useful to predict effects of particle size reduction, conductivity.
  - Study nature of Pt binding sites, interaction energy, etc.


#### Conductive NbO<sub>2</sub> and RuO<sub>2</sub> supports (UNM)

• Spray pyrolysis methods to prepared conductive metal oxide supports.









Fuel Cell Technologies

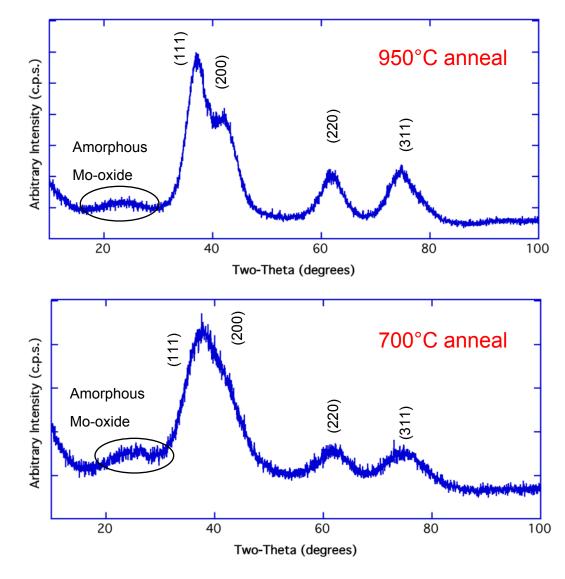




#### Technical Accomplishments and Progress: PAD Synthesis Results – Alternative Ceramic Supports Work *Ahead of Schedule*

- On schedule and presently developing PAD approach to prepare lanthanideboron materials using this method.
  - Precursors and synthetic route identified, and initial experiments are providing feedback to control reaction route.
- Synthesis of alternative ceramic supports pushed ahead of schedule.
  - Mo-N materials have been prepared and look very promising.
- Transition metal nitrides are being studied as corrosion barriers (nitriding stainless steel surfaces and coating of foils for PEMFCs – e.g. ORNL & NREL work)
  - Need powders with high surface area
- High electronic conductivity and stable in acidic conditions
  - Materials being studied for passivation coatings for PEMFC components
- Similar properties to transition metal carbides
- ORR on carbon-supported Molybdenum Nitride (Mo<sub>2</sub>N) has been studied: H. Zhong et al., Electrochem, Comm. 8 (2006) 707-712
  - showed activity without Pt present but no reports since then.




Fuel Cell Technologies

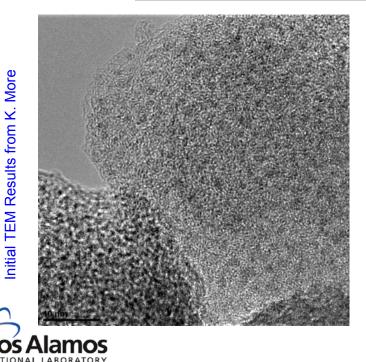


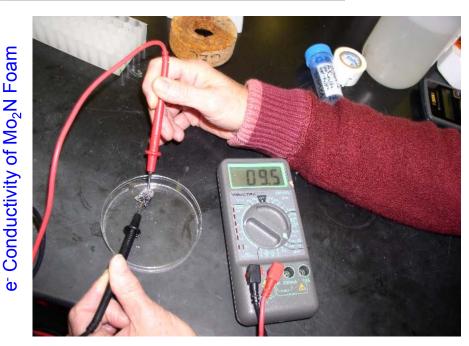
### Technical Accomplishments and Progress: Nano-sized Mo-Nitride Ceramics Produced

- Molybdenum Nitride Synthesis :
  - Mo<sub>2</sub>N cubic phase
- Ammonium molybdate/polyethylene imine (with EDTA) to produce a gel (100°C) followed by 700°C & 950°C anneals in forming gas (6%H<sub>2</sub>/Ar).
- Full profile fitting of XRD data indicate approximate crystallite size of 1.6nm, less (ca. 1nm) for 700°C prepared sample.



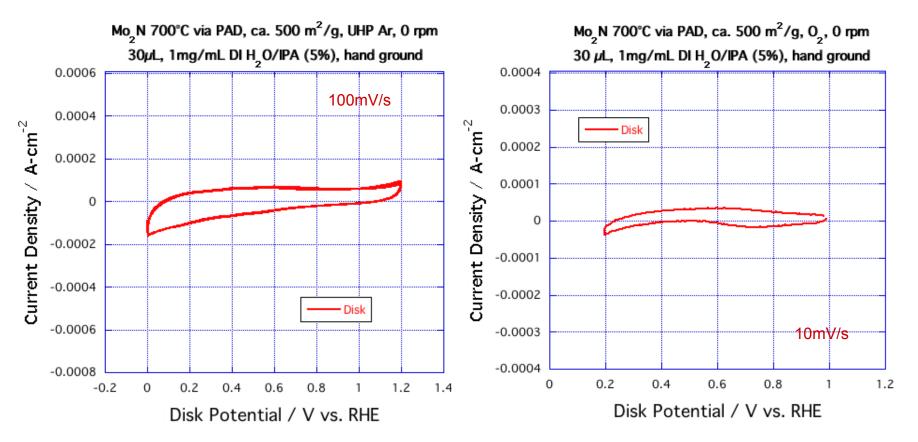



Fuel Cell Technologies




# Technical Accomplishments and Progress: Mo<sub>2</sub>N supports via PAD Characterization Pass Prerequisite Materials Requirements

- BET analysis indicates exceptional surface area : ca. 500m<sup>2</sup>/g
- Electronic conductivity.
- ICP/MS analysis indicates that the ceramic is stable in aqueous / 0.5M H<sub>2</sub>SO<sub>4.</sub>


| S                 | Тар      | D.I. System | Millipore | Acid Blank | Mo2N/H2O         | Mo2N/Acid        |
|-------------------|----------|-------------|-----------|------------|------------------|------------------|
| esults            |          |             |           |            |                  |                  |
| S                 | 960 ng/L | 1000 ng/L   | 12 ng/L   | 0.12 μg/L  | 123 <i>µ</i> g/L | 200 <i>µ</i> g/L |
| 2                 |          | 1200 ng/L   | < 2 ng/L  |            |                  |                  |
| <u> </u>          |          | 990 ng/L    | 6.8 ng/L  |            |                  |                  |
| $\mathbf{\Sigma}$ |          |             | 9.9 ng/L  |            |                  |                  |

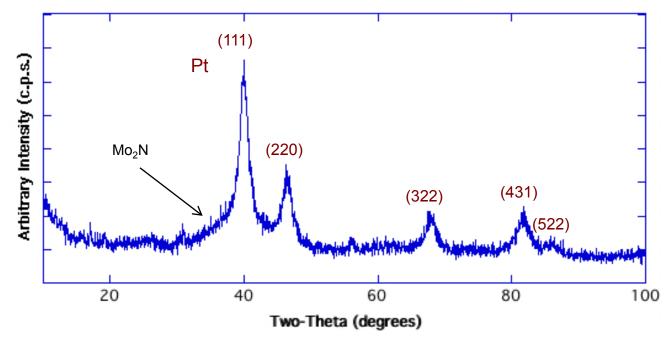






# Technical Accomplishments and Progress: Mo<sub>2</sub>N – Electrochemical Characterization Indicates Stable Support




- Standard preparation of glassy carbon disk electrode for CV characterization.
- Suspension prepared in same manner as carbon supports.
- CV characterization shows no Faradaic activity and no ORR.



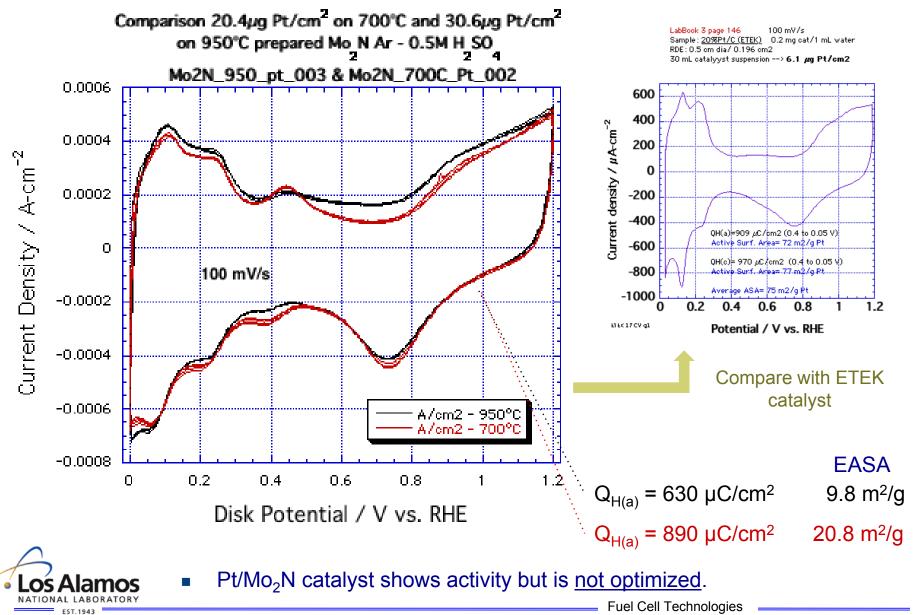
Fuel Cell Technologies



- Mo<sub>2</sub>N lightly ground to break up foam post synthesis.
- 0.2M H<sub>2</sub>PtCl<sub>6</sub> solution added in an incipient wetness "like" approach to prepare Mo<sub>2</sub>Nsupported Pt at 20 wt%.
- 6% H<sub>2</sub>/Ar reduction initially at 70-80°C.
- Isothermal TGA used, lower T, longer reduction decreases Pt crystallite sizes.
- Pt disposition process has not been optimized.

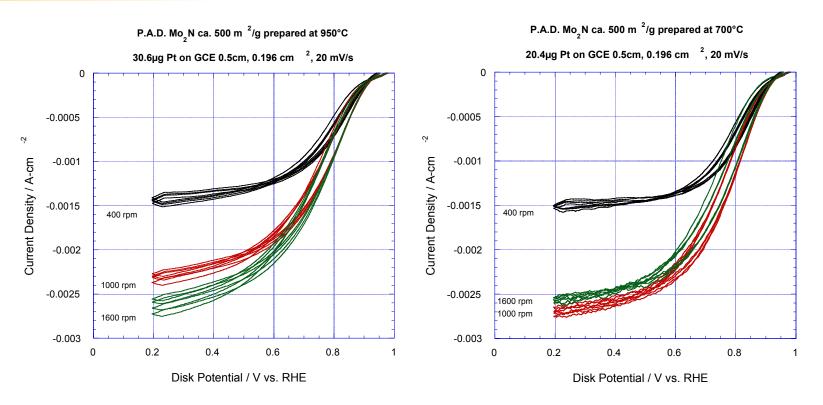


Average Pt crystallite size determined using MDI Shadow<sup>®</sup> ~ 36Å




700°C – prepared support, 20 wt% Pt, 70°C, 12 hr reduction

Fuel Cell Technologies




# Technical Accomplishments and Progress: Pt/Mo<sub>2</sub>N CV Characterization with 0.5M H<sub>2</sub>SO<sub>4</sub> Shows Pt/Carbon-like Activity



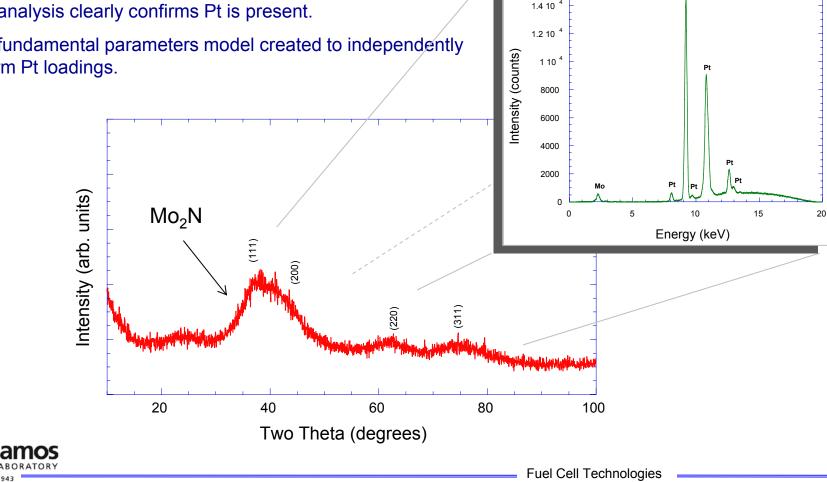


#### **Technical Accomplishments and Progress: ORR Activity Shown**



- Rotating disk electrode (disk only): glassy carbon, 0.196cm<sup>2</sup>
- Despite lower Active Surface Area determined using hydrogen desorption, ORR is comparable to 20wt% Pt/XC-72 ETEK catalyst.
- Sample with lower loading (20.4μg) out performs higher loading (30.6μg) w.r.t. EASA and ORR.
- Particle adhesion to glassy carbon electrode may be a problem (data on right)\*.

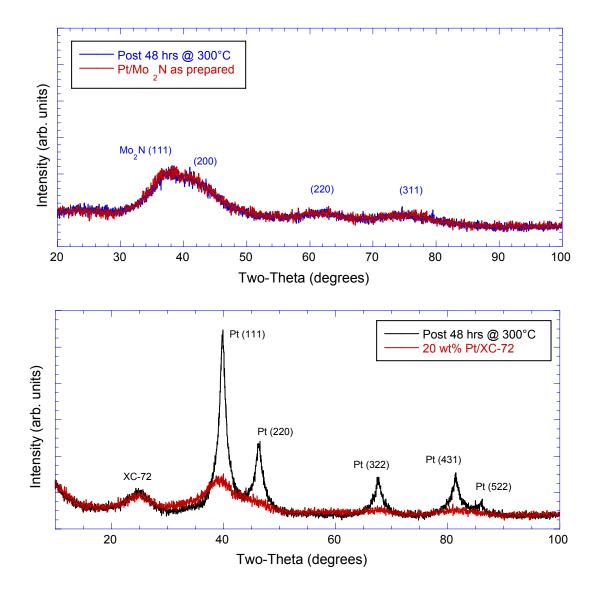
Los Alamos
NATIONAL LABORATORY


\*T.J. Schmidt et al., J. Electrochem. Soc. 145 (7) 1998.

Fuel Cell Technologies



#### Technical Accomplishments and Progress: In-situ Pt/Mo<sub>2</sub>N Formation **Using PAD Process Leads to Ultra-high Dispersions**

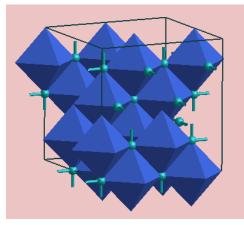

- PAD precursor modified to contain Pt.
  - Prepared under reducing conditions at 700°C, 1hr.
- 20 wt% Pt on Mo<sub>2</sub>N directly prepared from polymer precursor.
- XRD shows no diffraction from Pt.
- XRF analysis clearly confirms Pt is present.
- XRF fundamental parameters model created to independently confirm Pt loadings.



1.6 10

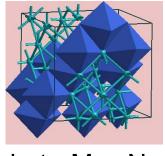
### Technical Accomplishments and Progress: Evidence for Enhanced Pt Interaction with Support

- Pt/Mo<sub>2</sub>N and Pt/XC-72 samples were subjected to a 48 hr anneal at elevated T.
  - 300°C, 48 hr
  - UHP N<sub>2</sub> atmosphere
- No grain growth/coalescence observed in Pt/Mo<sub>2</sub>N sample.
- Expected change seen in the Pt/Carbon sample.
- Profile fitting of XRD data show average Pt crystallite size increased from 12Å to 40Å on the carbon support.
- Electrochemical experiments must be performed to determine stability under potential cycling.

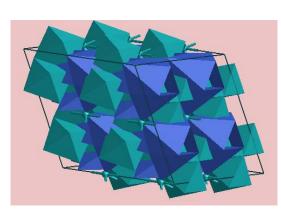





Fuel Cell Technologies




# Technical Accomplishments and Progress: Calculated Mo-N bulk phase structures & structural properties




gamma-Mo<sub>2</sub>N

|                      | a (Å) | c (Å) | V (Å <sup>3</sup> ) |
|----------------------|-------|-------|---------------------|
| beta - experiment    | 4.20  | 8.01  | 282.6               |
| beta - calculated    | 4.26  | 7.90  | 286.2               |
| delta - experiment   | 5.75  | 5.62  | 160.7               |
| delta - calculated   | 5.80  | 5.66  | 164.9               |
| gamma - experimental | 4.16  |       | 72.1                |
| gamma - calculated   | 4.11  | 4.29  | 75.6                |



 $beta-Mo_{16}N_7$ 



delta-MoN

Good reproduction of bulk structures.

Modeling of surfaces started.

 Key: N-blue, Mo-cyan







## Summary

- As of AMR meeting date: Project is On Schedule to meet first year milestones.
- Ceramic materials with critical physical/chemical requirements for PEMFC support applications (e.g. surface area, conductivity, stability, etc.) have been prepared. Optimization now required:
  - Materials synthesized and initial characterization survey nearly complete.
  - Mo<sub>2</sub>N ceramic support is a strong candidate with <u>high surface area</u>, <u>electronic</u> <u>conductivity</u>, and <u>stability</u>.
  - Evidence for enhanced Pt-support interaction with Pt/Mo<sub>2</sub>N, <u>electrochemical active</u> surface area (ECSA), and demonstrated <u>oxygen reduction activities</u> (ORR).
- Preparation of  $TiO_{2-x}$  and Zr-Nitride ceramic support materials is in progress.
  - "Black", reduced TiO<sub>2-x</sub> ceramics have been prepared using PAD approach and characterization has begun.
  - "Blue" reduced TiO<sub>2-x</sub> ceramics have been prepared using A-T-P plasma torch method.
  - Solution precursors for Zr-N and samples have been prepared and will serve to compare this ceramic to Mo<sub>2</sub>N.
- As expected, high surface area RE-hexaboride materials are proving to be a challenge.



Two FY11 Go/No-go decision milestones and one FY12 Go/Nogo decision milestone will be moved forward in project timeline.

Fuel Cell Technologies



# Collaborations / Distribution of Technical Personnel



(Prime – Fed. Lab. within DOE  $H_2$  prg.)

- Materials characterization & electrochemistry : Eric Brosha (PI)
- Rare earth hexa-boride supports; Jonathan Phillips
- Sub-stoichiometric TiO<sub>2-x</sub> supports; Jonathan Phillips
- PAD synthesis, high surface area powder supports; Anthony Burrell and Karen Blackmore
- MEA prep/FC testing; Tommy Rockward
- Support Modeling; Neil Henson



Conductive RuO<sub>2</sub> and NbO<sub>2</sub> Supports; Timothy Ward



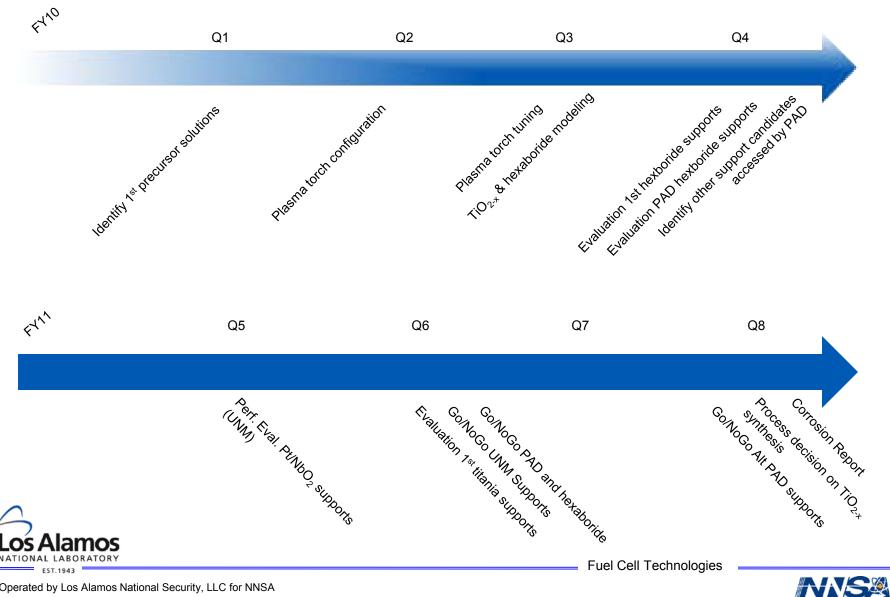
(Sub - University within DOE H<sub>2</sub> prg.)

Characterization; Karren More (PI – special materials)





## **Proposed Future Work – FY10 Q4 and into FY11**


- Finish A-T-P tuning & focus on direct hexaboride synthesis : accelerate Go/No-Go decision (milestone) for this material via plasma torch.
- Continue A-T-P synthesis work started in Q2 on the titania materials using oxide (rutile) and hydroxide containing aerosols (FY11 milestone).
- PAD synthesis work (all milestones):
  - Optimize precursors and synthesis conditions to prepare desired TiO<sub>2-X</sub> materials.
  - Synthesize and study Zr nitrides/compare properties to Mo materials.
  - Make identified synthetic PAD chemical route to hexaboride synthesis work.
- Characterize/evaluate hexaboride supports and fast-track to Go/No-Go (milestone).
- Accelerate portions of project using best support material(s) : e.g. start looking at how to make ink formulations for nitride materials (MEA studies).
- Complete UNM sub-contract procurement process and ramp up University led component of project.



Fuel Cell Technologies



#### Proposed Future Work – FY10 Q4 and into FY11 (Project Timeline)



# **Supplemental Slides**

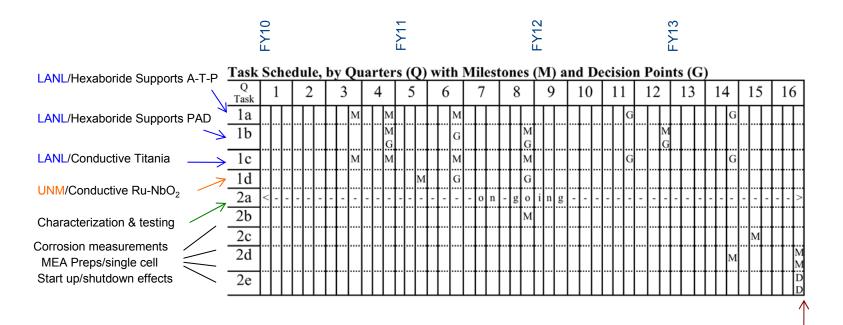


Fuel Cell Technologies



#### Technical Accomplishments and Progress: A-T-P Synthesis Work On Schedule

- On schedule to meet milestones for FY10.
- Plasma torch assembled a walk-in hood facility.
- Awaiting safety approval/certification to become fully operational.
- Precursors identified and test runs have been made:
  - lanthanide and barium cation and boron sources for hexaborides.
  - Nano-sized rutile/anatase for TiO<sub>2-x</sub> synthesis
- Initial testing/tuning runs have produced material for analysis.






Fuel Cell Technologies



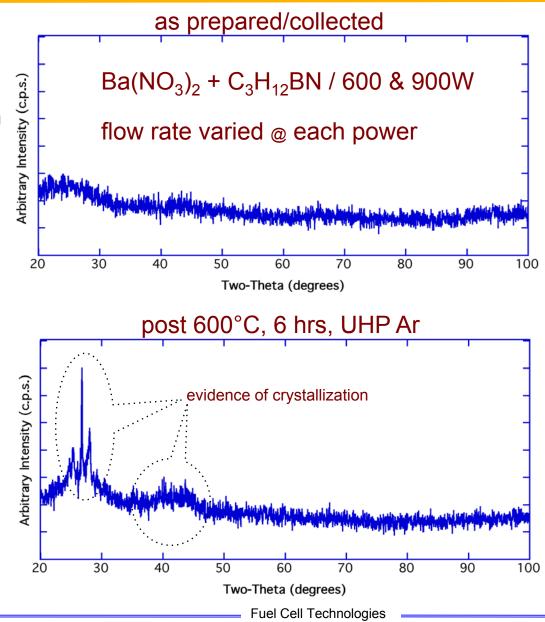
#### Milestones & Go / No-Go Decisions / Criteria from Proposal



- Criteria used to judge G/NG decision points
  - Particle size, surface area, conductivity
  - Pt support interaction, activity
  - Corrosion studies
  - Modeling input
  - MEA fabrication

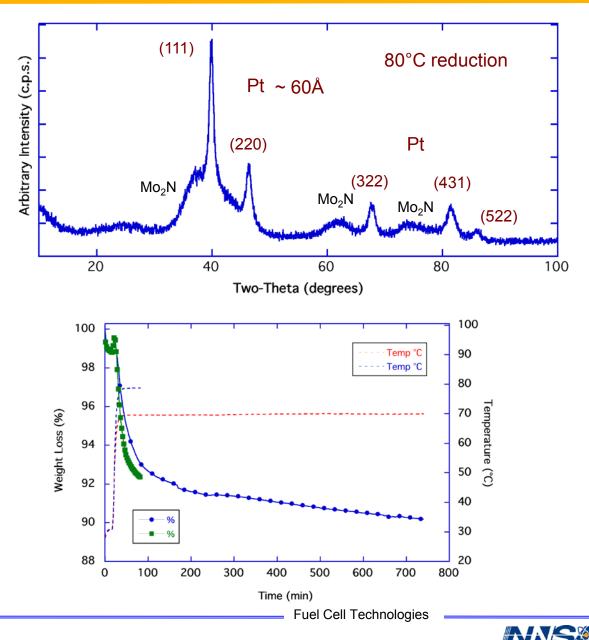


Fuel Cell Technologies




Deliver single cell for

testing/formal cost estimate


## Technical Accomplishments and Progress: A-T-P Synthesis - Initial Tuning Work

- As prepared/collected material from plasma torch shows no diffraction. (Both Eu & Ba trials)
- XRF confirms presence of barium (in the case of that sample).
- Samples post annealed show crystallization.
  - 600°C, UHP Ar begin to show crystalinity
  - Samples heated to 800°C show formation Ba<sub>2</sub>B<sub>2</sub>O<sub>4</sub> and possibly Ba<sub>2</sub>B<sub>4</sub>O<sub>7</sub>
  - Confirms both Ba and B are present in the collected, amorphous powder
- Presently using DSC to precisely measure onset of crystallization and to find source of oxygen.
- Torch tuning/optimization.



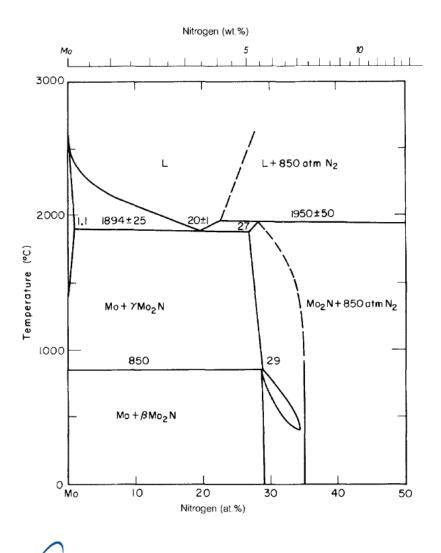
# Technical Accomplishments and Progress: Mo<sub>2</sub>N via PAD Synthesis/Pt disposition

- Mo<sub>2</sub>N lightly ground to break up foam.
- 0.2M H<sub>2</sub>PtCl<sub>6</sub> solution added in an incipient wetness "like" approach to prepare Mo<sub>2</sub>Nsupported Pt at 20 wt%.
- 6% H<sub>2</sub>/Ar reduction initially at 80°C, 1 hr.
- Via TGA experiments, lower T, longer reduction decreased Pt particle sizes.





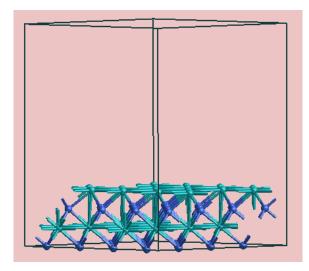
#### Technical Accomplishments and Progress: Computational Studies of Molybdenum Nitride Supports for Platinum Electrodes

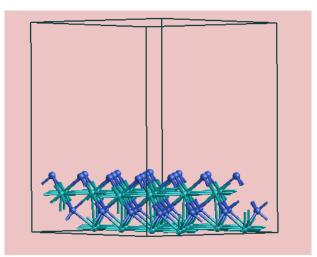

- **Aim** :
- calculations to predict the thermodynamics and activation barriers for fundamental electrode processes occurring at platinum surfaces when supported on thin films of molybdenum nitride to optimize materials properties
- Approach :
  - calculations to be performed using plane wave periodic density functional theory calculations (VASP software)
  - build models for known Mo-N bulk phases and optimize
  - based on these, build models for Mo-N dominant surfaces using guidance from experimental characterization and literature
  - determine most favorable binding sites for single and multiple platinum atoms on surfaces

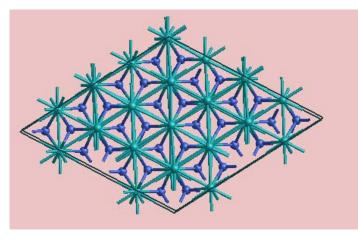


Fuel Cell Technologies




#### Technical Accomplishments and Progress: Computational Studies of Molybdenum Nitride Supports for Platinum Electrodes





- Several Mo-N phases present under varying conditions
  - delta-MoN is stoichiometric with hexagonal crystal structure, unstable at all temperatures, formed at high N<sub>2</sub> pressures
  - gamma-Mo<sub>2</sub>N is cubic with half the nitrogen sites vacant
  - beta-Mo<sub>16</sub>N<sub>7</sub> is tetragonal with a quarter of the nitrogen sites vacant
  - some evidence to suggest that unique structures are stabilised as thin films not observed in bulk

#### Technical Accomplishments and Progress: Models for surfaces -Mo-N materials modeling

• Starting point – most ordered structure : delta-MoN









- (001) surface : Mo and N rich
- 1, 2 and 3 coordinate binding sites for Pt on both



#### Introducing Aerosol-through-Plasma to the Market:

#### A Promising Technology

•IN THE NEWS: CAN IT CONQUER A \$12 BILLION/YEAR MARKET?

From a Nov. 5,'09 announcement-

Volvo Technology Transfer (VTT) has become one of four major investors in Arizona-based SDCmaterials. VTT has identified a unique opportunity to promote a state-of-the-art technology which looks set to revolutionise the catalyst industry.

SDCmaterials develops advanced nano-material formulations, which will significantly cut the cost of developing and manufacturing catalysts for the automotive industry. SDC's patented\* technology, which has significantly reduced the use of precious metals, is currently being tested by a leading German automotive manufacturer, with early indications suggesting that it could enter series production in 2010.

The technology has been developed for use in standard diesel engines and can be applied to all engine-powered vehicles. VTT's CEO Anders Brännström hopes that this technology might become a ground-breaking feature of the Volvo Group's future product range.

"We're extremely excited about the SDC opportunity," he says. "Thanks to this technology, we have the potential to reduce the cost of expensive catalytic materials by up to 60 per cent."

\*Phillips, J., 'Plasma Generation of Supported Metal Catalysts', U.S. Patent 5,989,648



Fuel Cell Technologies



 We wish to thank Nancy Garland and the U.S. DOE Hydrogen Program for providing funding for this work.



