Effects of Fuel and Air Impurities on PEM Fuel Cell Performance 2010 Annual Merit Review

Fernando Garzon Los Alamos National Laboratory

Project ID #FC045

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Researchers

Tommy Rockward Eric Brosha Jerzy Chlistunoff Adriana Fernandez **Tom Springer** Francisco Uribe John Davey Idoia Urdampilleta (CIDETEC) Brian Kienitz (LBL) Thomas Zawodzinski (Univ of Tenn, ORNL) Thiago Lopes (University of Sao Paolo)

Overview

Timeline

- Project start date FY-07
- Project end date FY-11
- Percent complete 80%

Budget

- Total project funding
 - DOE share %100
- Funding received in FY09 -800K
- Funding for FY010- 1M

Barriers

- Costs:
 - Fuel and air purification systems add cost
 - Impurity effects decrease fuel cell lifetime
 - Performance: Impurities and contaminants decrease fuel cell performance

Collaborators:

Relevance

- Objectives
 - Understand the effects of fuel cell operation with less than pure fuel and air; simulate "real world" operation.
 - Understand how impurities affect DOE fuel cell cost and performance targets
 - Contribute to the scientific understanding of impurity-fuel cell component interactions and performance inhibition mechanisms
 - Develop science based models of impurity interactions upon fuel cell performance
 - Experimental validation of models
 - Develop mitigation strategies and methods
- Impact
 - Lowing cost of fuel cell operation by improving performance and increasing lifetime

Technical Approach

- Impurities affect fuel cells in many ways:
 - Electrocatalyst poisoning e.g. H₂S, CO and SO₂ adsorption onto Pt catalysts
 - Reduce ionomer conductivity- Na⁺, Ca⁺⁺, NH₃
 - Block proton access to electrochemically active interface
 - Mass transport of water in ionmer may be reduced
 - GDLs may become hydrophilic and flood at high current densities

•Fabricate and operate fuel cells under controlled impurity gases

- -Multi-gas mixing manifolds and FC test stations
- -Pre-blend impurity gases
- -Measure performance
- -Steady state and cycling conditions
 - •Understand degradation mechanisms
 - •Study mitigation approaches
- •Design supporting experiments to measure fundamental parameters needed for modeling
 - -Electroanalytical experiments
 - -Adsorption studies
 - -Permeation studies
- •Analyze and model data
 - •Impurity impact on catalysis
 - •Impurity impact on transport

1000hr Drive Cycle Testing Effects of 10 ppb H₂S *milestone*

Cell:50 cm²

- MEA- Gore 720, anode- 0.10 mg Pt/cm², cath- 0.20 mg Pt/cm²
- Drive Cycle Durability Test:
- Constant voltage mode
 0.85V-0.6V
- Conditions— cell temp. 80C, H2: 1.2 stoich, 50 sccm min., 50% RH (63C), 14psig, AIR: 2.0 stoich, 75 sccm min., 50% RH (63C), 14 psig
- Initial pre-exposure run 100
 hours
- After pre-exposure run, a 1000 hour H2S, 10 PPB

Characterization:

- Collection of a sample of anode and cathode exhaust water for fluorine ion concentration testing
- Polarization tests— 0.95V -0.40V
- CV Analysis for electrochemical surface area
 changes 0.100V
 0.5V
- _____ changes 0.100V 0.5V,

Alamos

Degradation of fuel cell performance with respect to baseline Increased fuel cell losses in the kinetic region Cathode ECSA not significantly different The effect of hydrogen sulfide at this concentration would probably be recoverable by air purging or voltage pulsing

Cathode Loadings: 100 ppb SO₂

Under identical condition, we probe the impact SO_2 on cathode loadings: (0.1 and 0.2 mg Pt/cm²) Catastrophic failure in both expt's: further analysis showed a hole developed. We are currently revisiting the impact of cathode loadings.

Cathode Impurities: 100 ppb SO₂ Studies: 500h test *milestone*

Test Conditions:

- A/C: 0.1/0.2 mg Pt/cm²
- 50 cm², 100%Rh, 30 Psig
- H₂/Air: 1.2/2.0 stoich
- 50A constant current

Two cells were tested using 100ppb SO_2 in the cathode (LANL MEA vs Commercial) Losses were both ~200 mV,

Recovery stage showed very little performance increase

NO_x Influence on Membrane Resistance

•High frequency resistance rising indicative of cation poisoning

•Strong evidence of ammonium ion formation from NO reduction by hydrogen

NO_x tests: On and Off Cycling

- 5 ppm NO₂ exposure
- 0.8 A/cm² constant current
- Full recovery after short-term exposure
- Increasing RH did significantly change recovery rate

Cell Voltage@40A/ Volts

Long-term-NO_x tests

- •5 ppm NO₂ exposure
- •1 A/cm² constant current
- •Steady state response is reached
- •Probably ammonia water flux equilibrium

Ammonia Air or Fuel Impurities

Air Sources:

- Agriculture environment:
 - Potential source of ammonia (NH₃)
 - Ammonia can also be present in industrial environments
- Potential impact of NH₃ on the cathode of a PEMFC

Fuel Sources

Conversion of a fossil fuel into a hydrogen-rich gas:

- Byproduct of autothermal reforming process (if nitrogen is present)
- Reforming process three main byproducts:

- CO, H₂S, NH₃

- Ammonia, as a fuel impurity, affects the performance of a PEMFC^{1,2}
- There is also evidence³ that the concentration profile of cations across the membrane changes with the current density

Possible Effects of Ammonia on PEMFCs

Oxygen reduction reaction (ORR)

- Reduction of available active Pt sites for ORR
- NH₃ oxidation

Nafion[®]

 NH₃ in a PEMFC (acid media) forms NH₄⁺ and bonds with sulfonic groups

 $NH_3 + H^+ \leftrightarrow NH_4^+$

 $R - SO_3^- + NH_4^+ \iff R - SO_3NH_4$

- Reduction of water content in membrane (Membrane conductivity and ORR⁵)
- $\lambda_{H}^{+} = 20^{6}$

$$- \lambda_{NH^4}^{+} = 13^{6}$$

5. F. Uribe, T. Zawodzinski, S. Gottesfeld, J. Electrochemical Society, 149, A293 (2002); 6. R Halseid, P. J. S. Vie and R. Tunold, J. Electrochemical Society, 151, A381 (2004)

Ammonia in the Air (cathode)

• The increase in High Frequency Resistance (HFR) alone does not explain the loss in fuel cell performance 1ppm NH_3 on the cathode side, versus the time of contamination. Anode/Cathode/Cell: 80°C; Anode/Cathode: 0.2/0.2mg_{Pt}xcm⁻²; Nafion[®] 117; 30/30psi back pressure.

•Performance degradation increases with concentration

48 ppm NH₃ on the cathode side 80° C Anode/Cathode: 0.2/0.2mg_{Pt}xcm⁻² Nafion[®] 117; 30/30psi of back pressure

ORR in Presence of Ammonium Ions RDE study

• Ammonium decreases both the onset potential and current of the oxygen reduction reaction

•RDE Linear Sweep Voltammetry for oxygen reaction reduction on a polycrystalline platinum electrode, 1600rpms. $10mV/s^{-1}$, in 0.1M HClO₄ at 25^oC, at different [NH₄⁺] added as (NH₄)ClO₄

•Ammonium ions mainly affects the ORR in the fuel cell operating potential region (the higher [NH₃], the higher i_{ORR} losses)

PEMFC Cathode Exposed to NH₃

- •PEMFC exposed to 48ppm $\rm NH_3$ on the cathode side
- •Anode/Cathode/Cell: 80°C
- •Anode/Cathode: $0.2/0.2mg_{Ptx}cm^{-2}$
- Nafion[®] 117; 30/30psi of back pressure
- •Recovery time: 3.55 hours
- Voltage drop: 184mV
- HFR increase: 0.0125 Ohm-cm⁻²
- Voltage drop related to HFR increase: 11.5mV
- % of losses related to HFR increase: 6.3%

•Recovery time after PEMFC cathode exposed to 48 ppm NH₃ for 1h, at different current densities

•Recover rate is much faster at high current densities

•Water Flux rather than ammonium ion oxidation is the primary recovery mechanism

Cation impurity effects on ORR

- Cation impurities affect ionomer conductivity, water (a_{H2O}) and H⁺ (a_{H+}) activities and affect oxygen reduction kinetics
- Lowered conductivity of Nafion[®] complicates quantitative estimates of the impurity effects on the ORR kinetics
- Determination of the interfacial activity of H⁺ would greatly improve understanding of the impurity effects on ORR and fuel cell performance
- Iridium oxide-coated Au electrodes have been used as pH sensors in aqueous electrolyte solutions

Measurements of in situ H⁺ activity

The measurements will help decouple the various effects of cationic impurities on ORR kinetics and fuel cell performance

Ir/IrO_x electrode By high temp oxidation of Ir

• Freshly prepared electrode has to be hydrated/broken in before use

os Alamos

• No or a weak effect of oxidizing/reducing agents on the measured potential

Electrochemical behavior of hydrated Ir/IrO_x electrode

• Quicker response of hydrated electrode

.os Alamos

•Very little dependence on redox state, hydrogen oxygen concentration

Well defined linear relationship between potential and solution pH

Neutron Imaging Water in NH₄⁺ Contaminated Fuel Cell

- Parallel channel fuel cell ~10% ammonia exchanged 80°C 100% RH
- Fuel cell performance recovers
- Water distribution unchanged
- λ similar to protons

Cation Effect on Membrane Water Content *milestone*

•Membrane water content measured *in situ* by neutron imaging

•N117 and N117 sulphonic acids sites exchanged with Cs (56% and 100%)

Cation contamination greatly reduces membrane water content

•Reduced protonic conductivity due to lack of sulphonic acid sites

Summary

- H₂S anode poisoning/durability test completed
 - low concentrations do not appear to affect durability
- SO₂ long term testing completed
 low concentrations do not appear to affect durability
- NO_x fuel cell poisoning shown to be largely reversible
- NH₃ poisoning was shown to behave like cation contamination
 - Anode or cathode introduction produces similar fuel cell response
 - water equilibrium is the predominate removal mechanism
- Some cationic impurities were shown to change water concentration in fuel cells

Future Work

- Measurements of proton activities in operating fuel cells
 - Study effects of cation impurities on proton concentrations in electrodes
 - Validate modeling
- Continue studies of cation removal mechanisms
- Investigate the effects of gas phase contaminants on ultra low loading fuel cells

We gratefully acknowledge funding from the US DOE Office of Fuel Cell Technologies

Fuel Cell V Influence on SO₂Poisoning

- Cell operating voltage influences fuel cell poisoning rates
- More effect at higher cell voltages
- Crossover studies currently underway

Sulfur on Pt Anodes and Cathodes

Y. E. Sung, W. Chrzanowski, A. Zolfaghari, G. Jerkiewicz, A. Wieckowski, *Journal of the American Chemical Society* 119, 194 (1997)

Y. Garsany, et al J. ECS 154, b670 (2007).

SO₂ adsorption on to RRDE cathode
Sulfur adsorption strongly affects Oxygen reduction kinetics and pathways
Note large generation of peroxide for 0.37 of monolayer coverage

NO_X In Cathode Air

- 0.1mg/cm² Pt-C anode-0.2mg/cm² Pt-C cathode 50µm ionomer
- Fuel Cell Testing of 5ppm NO₂ cathode 1 A/cm² 80°C
- Steady decay in performance
- Some humidification dependence on performance losses
 - Higher humdification may remove more soluble NO₂
- FTIR spectroscopy to detect speciation

0.6

FTIR Spectroscopy

a mmonium ions 2400–3200 cm⁻¹

5ppm_100RH 5ppm_75RH 5ppm_50RH

• Sharp peaks at 2800 cm⁻¹ may be amine vibrational modes

Ammonium Ion Membrane Equilibrium

Membrane Blocking Cation Model and Validation

- •Na⁺, K⁺, NH₄⁺, Ca⁺², Cs⁺ enter/leave on a long time scale and affect conductivity dynamically. Only H⁺ enters/ leaves membrane on short time scale.
- •Water transport/electroosmotic-drag included, but boundary content maintained at λ =14 H₂O/SO₃⁻.
- •H-pump, not FC, model focuses on membrane effects, simplifies experimental verification and understanding.
- •Time response, limiting current discussed

•AC impedance model

Initial uniform 50% H^+ and NH_4^+ distribution Step current from 0 to 0.25 A/cm² $D_H = 1.73 \cdot 10^{-5} \text{ cm}^2/\text{s}$, $D_B = 3.63 \cdot 10^{-6}$ y_h and ϕ plotted every 0.2 s

uel Cell Research

Concentrated Solution Transport Equations Used in Membrane

Platinum electrodes in aqueous media

Iridium oxide-coated Pt electrodes in aqueous media

Voltammetry in 0.5 mol dm⁻³ H₂SO₄

Au/iridium oxide electrodes coated with Cs⁺-spiked Nafion®

Ir oxide deposition

H⁺ (Cs⁺) sensing

• Los Alamos

Water Profiles for N117 showing Cs Effect

Measured Water Thickness for a N117 Nafion[®] membrane with 56% Cs

Measured Water Thickness for a N117 Nafion[®] membrane with 100% Cs

