

### Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells:

**Morphological Simulations and Experimental Approaches** 

### Silvia Wessel Ballard Materials Products 8 June 2010

Project ID# FC049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## Overview



#### Timeline

- Start Date: January 2010
- End Date: March 2013
- Percent Complete: 7%

#### **Barriers**

#### A. Durability

- Pt/carbon-supports/catalyst layer
- B. Performance
- C. Cost (indirect)

#### **Budget**

- Total Project: \$6,010,181
  - \$ 4,672851 DOE + FFDRC
  - \$ 1,337,330 Ballard
  - Funding Received in FY10:
  - \$ 935,000 Ballard
  - \$ 243,000 LANL

### **Project Partners**

- Georgia Institute of Technology
- Los Alamos National Laboratory
- Michigan Technological University
- Queen's University
- University of New Mexico

# **Project Objective**

# BALLARD

### Identify/verify catalyst degradation mechanisms

- Pt dissolution, transport/ plating
- Carbon-support oxidation and corrosion
- Ionomeric thinning and conductivity loss
- Mechanism coupling, feedback, and acceleration

### Correlate catalyst performance & structural changes

- Catalyst layer and unit cell operational conditions
- Catalyst layer morphology and composition
- Gas diffusion layer (GDL) properties

### Develop kinetic and material models for aging

- Macro-level unit cell degradation model
- Micro-scale catalyst layer degradation model
- Molecular dynamics degradation model of the platinum/carbon/ionomer interface

### Develop durability windows

- Operational conditions
- Component structural morphologies and compositions



## **Project Relevance**

# BALLARD

### **Project Objectives**

Understanding of the degradation mechanisms

Relationships to degradation rates

Three-phase interface stability

Component interface stability

Development of degradation models

GDL effect on catalyst layer degradation

### **Project Outcomes**

Verification of catalyst layer degradation mechanisms

Performance and structural degradation correlations

Predictive mechanistic models for catalyst layer degradation

Mitigation 'windows' for catalyst layer degradation



## **Overall Technical Approach**



### **Overall Project Structure**

| Theoretical<br>Modeling                                     | Degradation<br>Investigations                                              | Material & Component<br>Characterization                                           |
|-------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Molecular Dynamics<br>≻ GIT (S. Jang)                       | <u>Cell-level ASTs</u><br>≻ Ballard                                        | <u>MEA Components</u><br>→ Ballard<br>→ UNM (P. Atanassov)                         |
| Micro-scale Component<br>➤ Ballard<br>➤ QU (J. Pharoah)     | <u>Micro-cell ASTs</u><br>≻UNM (P. Atanassov)                              | <ul> <li>MTU (J. Allen)</li> <li>LANL (R. Borup)</li> <li>QU (K. Karan)</li> </ul> |
| <u>Macro-scale MEA/Cell</u><br>➤ Ballard<br>➤ QU (K. Karan) | <u>Neutron Imaging</u><br><u>ASTs</u><br>≻ LANL (R. Borup,<br>R. Mukundan) | <u>MEA Assembly</u><br>➤ Ballard<br>➤ MTU (J. Allen)<br>➤ UNM (P. Atanassov)       |



## **Approach - Modeling**

### **Theoretical Modeling Methodology**



BALLARD

## Modeling Approach Molecular Dynamics



### **Molecular Dynamics Model of the Pt/C/Ionomer Interface**

- Develop model of a Pt/C particle covered with ionomer
- Investigate interaction effects at BOL in 3-phase interface

### Molecular Dynamics Modeling of Pt Dissolution

- Expand Pt/C/ionomer model to include Pt dissolution
- Investigate role of ionomer hydration/equivalent weight, Pt size/shape, and preferential dissolution location

### **Molecular Dynamics Modeling for Pt Ion Transport**

- Develop simulation for the transport of platinum ions in hydrated ionomer
- Predict the transport coefficients for platinum ions
- Validate transport coefficients against experimental data



## Modeling Approach Micro-Scale Component



#### **BOL Catalyst Layer Micro-structure Model**

- Extension to include water management
- Validation of effective property/performance predictions at BOL

### **Transient Catalyst Layer Micro-structural Degradation Model**

- Implement transient and degradation solvers
- Simulate AST cycles
- Validate predictions against experimental data

### **Micro-structural GDL Model**

- Predict effective properties at BOL
- Validate BOL effective properties with experimental data
- Simulate measured changes of aged GDL microstructures
- Predict effect of aged microstructure on transport properties
- Validate aged transport properties with experimental data

## Modeling Approach Macro-scale MEA/Cell

# BALLARD

### **Unit Cell Performance Model (BOL)**

- Include interface descriptions and statistical input options
- Validate against experimental data and statistical variability

### Unit Cell Degradation Model (Aged)

- Include transient and degradation solvers
- Validate predictions using experimental data
- Simulate AST cycles for different operational conditions and morphologies

### **Model Integration**

- Integrate micro-structural relationships
- Develop user guide/interface for simplified model application
- Release model for public dissemination



## - Approach Experimental Investigations

# BALLARD

### **Experimental Methodology**



## **Experimental Approach:** Cell Level Accelerated Stress Testing

# BALLARD

#### **Experimental Benchmarking**

- Review and down-select experimental techniques
- Compare degradation mechanisms for DOE and Ballard AST protocols
- Identify key operational and structural variables for degradation design curves, based on Ballard data and literature

### **Operational and Structural Design Curves**

- Quantify the effect of operational stressors on degradation mechanisms and rates
- Quantify the effect of structural stressors on degradation mechanisms and rates
- > Develop design curves for stressor effects

### **Operational and Structural Coupling**

- Determine interactions between structural and operational stressors
- > Quantify the coupling and feedback effects

## **Experimental Approach:** Micro-Cell and Neutron Imaging AST

# BALLARD

### In-Situ HRTEM (BOL/Aged Catalyst Layers) (UNM)

- In-situ HR TEM methodology development and measurements of electro-catalysts changes in oxidative environment
  - Develop/refine measurement technique for analysis of Pt surface area loss
  - Characterize Pt loss mechanisms during AST cycling
    - Analysis of Pt size and distribution change during conditioning
    - Pt size change and distribution as a function of upper potential limit

### Aged MEA Water Content Changes (LANL)

- Measure water content in cathode /anode GDL/membrane using Neutron Imaging
  - BOL
  - Progressively aged (from selected AST studies)

Determine progressive changes in water content of MEA during AST testing using Neutron Imaging

## **Experimental Approach:** MEA Components Characterization

# BALLARD

### **Catalyst Powder (UNM, Queen's)**

- Establish material characteristics using standard techniques
- Transfer data for model input and experimental design curve development

### **GDL Characterization (LANL, MTU)**

- Characterize property changes with degradation, using standard techniques
- Cross-correlate property changes with AST degradation rates

#### Catalyst Layer Characterization (UNM, LANL, MTU, Queen's)

- Develop electrochemical corrosion measurement technique
- Quantify carbon-support changes with degradation
- Adapt capillary pressure technique for catalyst layers
- Determine capillary pressure changes with degradation



## **Experimental Approach:** MEA and Interface Characterization

# BALLARD

### **MEA Characterization (UNM)**

- De-convolute performance losses using voltage loss breakdown techniques
- Cross-correlate voltage loss breakdown with measured property changes
- Quantify and cross-correlate failure modes

### **MEA Interface Characterization (MTU)**

- Develop technique to quantify CCL/GDL interface characteristics
- Quantify interface changes with degradation
- Correlate voltage loss breakdown with interface and water content changes



## **Project Deliverables**

# BALLARD

#### Unit Cell / MEA Macro-scale Model

- Integrated micro-structural relationships
- User guide/interface for simplified model application
- Model for public dissemination

#### **Mitigation Windows**

- Operational degradation mitigation 'windows' for catalyst layer designs using experimental data and model predictions
- Morphological degradation mitigation 'windows' for catalyst layer designs using experimental data and modeling predictions
- Recommendations for further research/modeling



## **Project Milestones & Timeline**

# BALLARD



Modeling Milestones

Correlations Development Milestones

Tools/Methodology Development Milestones

★ Go/No-Go Decision Point



Unit Cell Performance Model (BOL Stage)

Go: Model BOL performance predictions are within statistical variation of the experimental data



### Milestones and Progress FY 2010/11 (1/2)



| Milestones                                                                 |                                                                                                                                                        |                    |                      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| Task                                                                       | Description                                                                                                                                            | Completion<br>Date | Status<br>% complete |
| Model Development and B                                                    | OL Simulations                                                                                                                                         |                    |                      |
| ★BOL Catalyst Microstructure                                               | Add governing physics/chemistry for liquid water production and movement, validate model using BOL experimental data from PHASE 1- Task 3.0            | Dec-10             | awaiting<br>contract |
| *Molecular Dynamic Modeling<br>of Pt/C/lonomer Interface                   | Create a Molecular Dynamics Model of a carbon supported Pt particle that is activated via the ionomeric phase. Run model to study transport processes. | Dec-10             | awaiting<br>contract |
| Microstructural GDL Model                                                  | Simulate GDL microstructures using GeoDict software and extract effective properties. Compare/validate against data from Phase 1.0 - Task 3.0.         |                    | not started          |
| Experimental Benchmarkin                                                   | 9                                                                                                                                                      |                    |                      |
| ★Down Selection of In-situ<br>and Ex-situ Characterization<br>Techniques   | Evaluate and validate in-situ and ex-situ techniques that will enable characterization and quantification of the degradation mechanism                 | Jul-10             | 70% complete         |
| Correlations of ASTs                                                       | Evaluate/correlate DOE voltage degradation ASTs using in-situ/ex-<br>situ characterization                                                             | Jul-10             | 70% complete         |
| <ul> <li>Evaluation of Structural and<br/>Operational Stressors</li> </ul> | Evaluate literature, previous experimental results, and new AST data to prioritize key variables that affect degradation rates and mechanisms          | Aug-10             | 50% complete         |
| * Milestone                                                                | ACCELERATING FUEL CELL MARKET ADOPTION                                                                                                                 |                    |                      |



## Milestones/Progress FY 2010/11 (2/2)

| Milestones                                                                 |                                                                                                                                                                                                                                         |                                 |                      |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| Task                                                                       | Description                                                                                                                                                                                                                             | Completion<br>Date              | Status<br>% complete |
| Ex-situ Characterization                                                   |                                                                                                                                                                                                                                         |                                 |                      |
| Catalyst Powder<br>Characterizations                                       | Characterize catalyst powder using standard techniques, such as XRD, SEM, EDX, HRTEM, Brunauer-Emmett-Teller Surface Area                                                                                                               | ongoing                         |                      |
| BOL Catalyst Layer and<br>Aged Catalyst Layer In-situ<br>* HRTEM Technique | Characterize catalyst layers using standard techniques, such as ex-<br>situ HRTEM, XRD, SEM, (2). Establish the in-situ HRTEM technique<br>and measure structural changes during AST testing.                                           | Jan-11                          | awaiting<br>contract |
| BOL GDL Characterization                                                   | Characterize GDL structures using standard techniques, such as<br>Diffusivity, Mercury Intrusion Porosimetry (MIP), Thickness,<br>Resistance, Capillary Pressure, Contact Angle.                                                        | ongoing                         | not started          |
| Durability Model Development and Simulations                               |                                                                                                                                                                                                                                         |                                 |                      |
| ★Unit Cell Performance Model<br>– BOL                                      | Include physics that describes the relevant transport properties for<br>the component interfaces. Run model with statistical BOL input<br>characterization results and effective properties generated by the<br>micro-structural model. | Jun-11<br><mark>Go/No-Go</mark> | 20%                  |

#### \* Milestone

ACCELERATING FUEL CELL MARKET ADOPTION



BALLARD

# BALLARD

### **Linking Compositional Effects**



# BALLARD

### **Pt Loading Comparison**





# BALLARD

### **Compositional Effect: 12 and 26 wt.% Ionomer Ratio**



#### Parameter set

Held constant for both Air/Oxygen and 12/26% Ionomer simulations

#### Input Parameters

- ECSA, operational conditions, material ratios, and component dimensions
- Material properties, e.g. density

#### Results

- Current density < 1 A/cm<sup>2</sup>
  - good predictions j<1 A/cm<sup>2</sup>)
  - Including Pt-O effects will further improve predictions
- Current density > 1 A/cm<sup>2</sup>
  - Liquid water transport model will improve predictions (vapor only results shown)
  - Component interface effects
  - Additional validation data will include statistical variation



# BALLARD

### **Macro Model Catalyst Effect**



#### Macro-level simulations

Very sensitive to the choice of catalyst model

#### Agglomerate models

- May provide a partial alternative explanation for mass transport losses at higher current density
  - liquid water + catalyst structure

#### Moving Forward

- Both models will continue to be evaluated
- Micro-structural models will provide improved descriptions of the catalyst structure for BOL performance simulations
- Model choice will have an impact on the understanding of degradation from model predictions

ACCELERAT

# BALLARD

### State-of-the-Art Unit Cell Components & Hardware

#### Reference MEA

- Pt Catalyst
  - Graphitized carbon-support
  - 50:50 Pt/C ratio
  - Nafion<sup>®</sup> ionomer
- Catalyst loading
  - Cathode/anode
  - 0.4/0.1 mg/cm<sup>2</sup>
- Catalyst coated membrane
  - Ballard manufactured CCM
  - Nafion<sup>®</sup> NR211
- Gas diffusion layer
  - BMP product
  - Continuous process

### ID Test Hardware

- Bladder compression
- High flow rates
- Temperature control
  - Liquid cooling
- Carbon composite plates
  - Low pressure
  - Parallel flow fields
  - Designed for uniform flow
- Framed MEA
  - 45 cm<sup>2</sup> active area

# BALLARD

### Diagnostics for Analyses of Cell-level Accelerated Stress Testing (AST)\*

### **Quantification of changes in**

- Performance
  - kinetic, ohmic, mass transport
- Effective catalyst surface area (ECSA)
- Cell and ionomer resistance
- Double layer capacitance
- H<sub>2</sub> cross-over
- Mass and specific activity
- Pt agglomeration and crystallite orientation
- Morphology/thickness
  - \* Ongoing evaluation, list of diagnostics may change subject to further analysis

### In-situ diagnostics

- H<sub>2</sub>/air polarization (performance, limiting current)
- H<sub>2</sub>/O<sub>2</sub> polarization (V-loss breakdown)
- Cyclic voltametry (CO stripping, ECSA, double layer charging current, H<sub>2</sub> cross-over, Pt surface)
- EIS (cell resistance, ionomer resistance, double layer charging current)

#### Ex-situ

- SEM (catalyst/membrane thickness)
- SEM/EDX (Pt content in membrane and catalyst layer)
- XRD (Pt crystallite size, orientation)



# BALLARD

### **Accelerated Stress Test Protocol Comparison**

| Attributes         | DOE AST<br>Adapted for BPS Hardware | Ballard AST                                                             | <u>P</u> |
|--------------------|-------------------------------------|-------------------------------------------------------------------------|----------|
| Cycle Profile      | Triangular Wave                     | Square Wave                                                             |          |
|                    | 0.6V to 1.0V, 50mV/s                | 0.6V (30s) to 1.2V (60s)                                                |          |
| Time / Cycle       | 16s                                 | 90s                                                                     |          |
| Number of Cycles   | 30,000                              | 5,000                                                                   |          |
| Total Cycling Time | 133 hours                           | 125 hours                                                               |          |
| Temperature        | 80°C                                | 80°C                                                                    | -        |
| RH Anode/Cathode   | 100% / 100%                         | 100% / 100%                                                             |          |
| Fuel / Oxidant     | $H_2$ 4450 sccm $N_2$ 9000 sccm     | H <sub>2</sub> 4450 sccm<br>21%O <sub>2</sub> /N <sub>2</sub> 9000 sccm |          |
| Pressure           | 5 psig                              | 5 psig                                                                  |          |

### **Protocol Differences**

- DOE protocol adapted for Ballard hardware
  - Low pressure
  - High flow
- Triangular vs. square ramp
- 1.0V vs. 1.2V upper potential
- **N**<sub>2</sub> vs. synthetic Air
- Total cycling time is similar







#### Low current density

- Performance losses are very similar and consistent with predominately kinetic changes for both ASTs
- ECSA and mass activity losses vs. cycle time are very similar between ASTs

#### High current density

Performance losses at 0.8 A/cm<sup>2</sup> at End of Test (EOT) is ~14mV for DOE AST and ~29mV for Ballard ASTs indicating some contribution of non-kinetic related losses in both ASTs

# BALLARD

### **DOE/Ballard AST Results**



- DOE AST exhibits Pt accumulation at the cathode/membrane interface, Ballard AST results in Pt in the membrane (PITM)
- No significant changes in membrane nor cathode thickness were observed in either AST
- DOE AST results in larger average Pt crystallite size (XRD) compared to Ballard AST (9.3 nm vs. 7.4 nm)

# BALLARD

AGE

### **AST Summary and Recommendation**

| Oxidant  | Failure Modes                                                                                                      | Advantages                                                                                                                                                                                                     | Limitations                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nitrogen | <ul> <li>Pt Agglomeration</li> <li>Carbon Surface<br/>Oxidation</li> <li>Carbon Corrosion</li> </ul>               | <ul> <li>Relationships can be established without interference of other degradation modes</li> <li>RH can be controlled (No product water effects)</li> </ul>                                                  | <ul> <li>Does not simulate PITM</li> <li>Does not take into account possible interference of membrane degradation biproducts</li> </ul>                                                                                              |
| Air      | <ul> <li>Pt Agglomeration</li> <li>PITM</li> <li>Carbon Surface<br/>Oxidation</li> <li>Carbon Corrosion</li> </ul> | <ul> <li>Effect of Membrane<br/>Degradation (bi-products)<br/>on voltage degradation<br/>are captured</li> <li>Will capture effect of<br/>ionomer degradation</li> <li>More realistic to field data</li> </ul> | <ul> <li>More difficult to control RH<br/>due to water production</li> <li>May be more difficult to<br/>separate failure modes</li> <li>More difficult to control/<br/>set-up equipment<br/>(potentiostat &amp; loadbank)</li> </ul> |

#### Recommendation: Continue using Ballard AST

- Ability to quantify Pt in the membrane failure mode
- 1.2V upper potential limit enables better comparison with state-of-the-art catalysts and minimizes membrane degradation
- Membrane thinning is not observed

## Collaborations



PAGE 29

#### Prime: Ballard Material Products / Ballard Power Systems (S. Wessel, D. Harvey, V. Colbow)

Micro-structural/MEA/Unit Cell modeling, AST correlations, characterization, durability windows

# Sub: Queen's University – Fuel Cell Research Center (K.Karan, J. Pharoah)

Micro-structural Catalyst Layer/Unit Cell modeling, catalyst characterization

#### Sub: Georgia Institute of Technology (S.S. Jang)

Molecular modeling of 3-phase interface & Pt dissolution/transport

#### Sub: Los Alamos National Laboratory (R. Borup, R. Mukundan)

Characterization of catalyst layer/GDL

#### Sub: Michigan Technological University (J. Allen)

Capillary pressure and interface characterization, catalyst layer capillary pressure tool development

#### Sub:University of New Mexico (P. Atanassov)

Carbon corrosion mechanism, characterization of catalyst powder/layers

## Proposed Future Work Modeling (FY2010/11)

# BALLARD

### Molecular modeling of the Pt/C/ionomer system

Investigation of defining features/characteristics of the Pt/C/Ionomer interface

# Micro-structural catalyst model expansion for liquid water

- Extraction of effective properties vs. catalyst layer composition
- Simulation of catalyst performance vs. effective properties

### BOL MEA/Cell macro-model development and validation

- Addition of liquid water transport physics (from avail. literature)
- Addition of Pt-O/OH pathway for ORR kinetics
- Simulation/validation using cyclic voltammetry
- Description for interfacial transport resistance between components
- Capability to input statistical characterization data

## **Proposed Future Work** Experimental (FY2010/11)



### Operational and Structural Design Curves

- Structural Stressors
  - Establish performance degradation rates for different carbon supports
     Effect of carbon surface area and graphitization levels
  - Establish performance degradation rates for different ionomer content
     10 to 50% ionomer by weight in catalyst layer
  - Establish performance degradation rates for different Pt/C ratios
     20% to 100% (subject to availability)

#### Operational Stressors

Establish performance degradation rates for two carbon supports
 Effect of upper potential limit (0.8V to 1.4V)

### Characterization

- In-situ HRTEM Tool
  - Methodology development
- Quantitative changes of the Pt surface and carbon support
  - Degradation species/chemistry



# Summary

# BALLARD

#### Relevance

- Improving understanding of durability for fuel cell materials and components
- Providing recommendations for the mitigation of MEA degradation that facilitates achieving the stationary and automotive fuel cell targets

#### Approach

- Develop forward predictive MEA degradation model using a multi-scale approach
- Investigate degradation mechanisms and correlate degradation rates with catalyst microstructure and cell operational conditions

#### Technical accomplishments and progress to date

- Recommendation of AST protocol for going forward based on comparison of DOE and BPS protocols
- Inclusion of composition effects into BOL MEA performance model and initial experimental validation.

#### Collaborations

- High levels of interaction between all project participants
- Project participants have complementary expertise and capabilities

#### Proposed future research

- Further development of MEA model and statistical validation (Go/No-Go)
- Effect of the carbon support and ionomer content on AST degradation rates



# **Supplemental Slides**

ACCELERATING FUEL CELL MARKET ADOPTION



une 8, 2010

PAGE 33



# BALLARD

### **Domain and Physics Description\***



#### **1-D Model Physics\***

- Conservation of
  - Mass (species)
  - Charge (protonic/electronic)
- Diffusive transport
  - Fickian-based
  - Multi-component (in-progress)
- ORR electrochemistry
  - Butler-Volmer equation
  - Agglomerate or discrete structure description.

\*Status as of March 2010, additional features currently under development to extend the model and refine the physics.



# BALLARD

### Catalyst Model Description\* Agglomerate Model



- Physical catalyst layer with additional sub-structure description
- Protonic, electronic, and diffusive resistance for layer
- Transport resistance and utilization within agglomerate structure
- Layer distributed ORR reaction



\*Status as of March 2010, additional features currently under development to extend the model and refine the physics.

# BALLARD

### Compositional Effect Parametric Study of Ionomer:(Pt:C) Ratio



ACCELERATING FUEL CELL MARKET ADOPTION



ratio)

## Accomplishments/Progress Unit Cell Performance Model Status Summary

# BALLARD

#### Features required at Go/No-Go point:





#### **DOE/Ballard AST Results**



Both ASTs exhibit H<sub>2</sub> cross-over rates that are similar within experimental error over the test

The open circuit voltage (OCV) increased by ~15 to 20mV over the initial 50 hours of AST cycling, likely due to cleaning of the PT surface and surrounding environment

# BALLARD

PAGE 39

### **DOE/Ballard AST Results**



#### Cyclic Voltametry - CO stripping reveals some differences between DOE and Ballard ASTs

- DOE AST shows wide CO peaks that shift to lower voltage with increasing number of cycles
  - Peak broadening consistent with increased Pt agglomeration observed with DOE AST
- Ballard AST causes narrowing of CO peak with cycling, but peak does not shift

# BALLARD

## Voltage Loss Breakdown (VLB) Technique



- Oxygen and air polarization curves are fitted to Tafel equation and corrected for H<sub>2</sub> crossover and iR losses to give lines 1 & 2.
- EIS high frequency resistance was added to line 2 to give line 3.
- Nernst mass transport loss (calculated from limiting current) is added to line 3 to give line 4.

Difference between line 4 and line 5 is assumed to be catalyst layer ionomer losses (primarily ohmic with additional porous layer mass transport limitations)

 \* Assumption: Anode loss is negligible; however, the VLB includes a linear anode loss component derived from anode electrode measurements using a dynamic reference electrode.