

# **Economic Analysis of Stationary PEM Fuel Cell Systems**

Kathya Mahadevan, Vince Contini, Matt Goshe, Joseph Price, Fritz Eubanks and Fred Griesemer

Battelle

June 8, 2010

Project Id: FC050

This presentation does not contain any proprietary, confidential, or otherwise restricted information

### Overview Status of the Economic Analysis Project

#### Timeline

#### **Barriers**

| • | Project start date: November 2003                                            | • | All distributed generation systems barriers                                                           |
|---|------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------|
| • | Project end date: October 2010                                               | • | All fuel-flexible fuel processor barriers                                                             |
| • | Percent complete (2009): 65% (Apr 2009)                                      | • | All fuel cell component barriers                                                                      |
|   |                                                                              | • | Manufacturing costs                                                                                   |
|   |                                                                              | • | Material costs                                                                                        |
|   | Budget                                                                       |   | Partners                                                                                              |
| • | Total Project Funding: DOE Share<br>\$3,163,843 and No Contractor Cost Share | • | Extensive solicitation with fuel cell industry stakeholders for design, data, and review              |
| • | Funding received in FY04: \$526,548                                          |   | <ul> <li>Fuel cell industry and associated</li> </ul>                                                 |
| • | Funding received in FY05: \$650,659                                          |   | stakeholders. More than 60 companies                                                                  |
| • | Funding received in FY06: \$599,013                                          |   | and agencies have participated in<br>facilitated discussions                                          |
| • | Funding received in FY07: \$703,283                                          |   |                                                                                                       |
| • | Funding received in FY08: \$684,340                                          |   | <ul> <li>Since the start of the project, more than<br/>400 current or candidate users have</li> </ul> |
| • | Funding received in FY 09: \$300,000                                         |   | participated in surveys, interviews, and focus groups                                                 |

### Relevance Project Objectives and Impact

To assist DOE in developing fuel cell systems by analyzing the technical, economic, and market drivers of polymer electrolyte membrane (PEM) fuel cell adoption\*. Support in 2009 included two tasks:

- Developing technical targets for a 5 kW direct hydrogen PEM fuel cells for backup power by developing a manufacturing cost analysis at varying levels of production
  - 2000 units per year [Base case presented here]
  - 10,000 units per year
  - 100,000 units per year
- Developing an economic and market opportunity analysis for micro-CHP PEM fuel cells to identify key target markets and value proposition for PEM fuel cells

\*Note: Scope of the project is limited to PEM fuel cells for stationary applications.

The Business of Innovation

### Relevance **Project Progress to Date**

#### **Manufacturing Cost Analysis**

- Established baseline system design
- Received input from major fuel cell manufacturers and component suppliers
- Developed base cost estimates for a 2010 design of a 5 kW PEM fuel cell system for 2000 units
- Initiated sensitivity analysis

#### **MicroCHP Analysis**

- Identified markets for microCHP PEM fuel cells
- Analyzed the status of current PEM fuel cell products and competing alternatives
- Performed comprehensive marketing research through primary and secondary methods to understand user requirements

## Collaborations

#### **Manufacturing Cost Analysis**

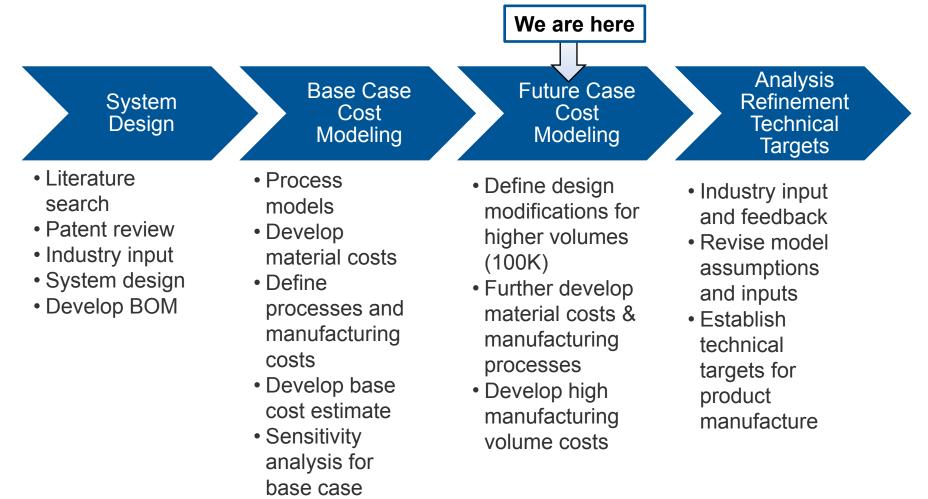
Industry input through detailed discussions for system design, manufacturing process review, material cost inputs, and peer review

• 3M

- Gore
- GrafTech
- Bulk Molding Company
- Metro Mold & Design
- DuPont
- Ballard
- Plug Power
- IdaTech
- Hydrogenics
- ReliOn
- Nuvera

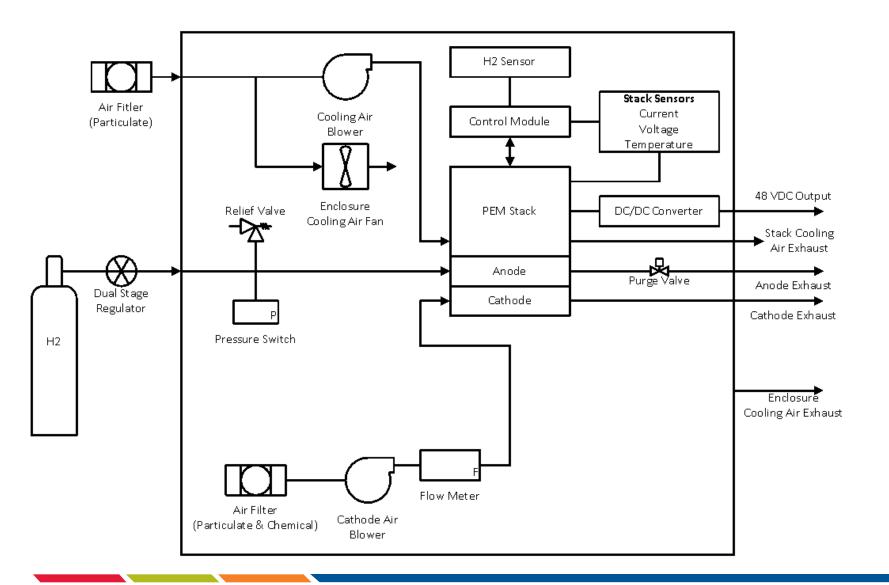
#### MicroCHP Analysis

Fuel cell industry, Utility, government, and competing technology input is used for understanding markets, user requirements, technology performance received through surveys and interviews. Examples of interviewees include -


- Plug Power
- Ballard
- Accumetrics
- Ceramic Fuel Cells
- ClearEdge
- Baxi Group
- Enerfuel
- National Grid
- Delta Energy
- Japanese microCHP industry



## Manufacturing Cost Analysis Technical Accomplishments


#### **Battelle** The Business of Innovation

#### Approach Manufacturing Cost Analysis Task Approach





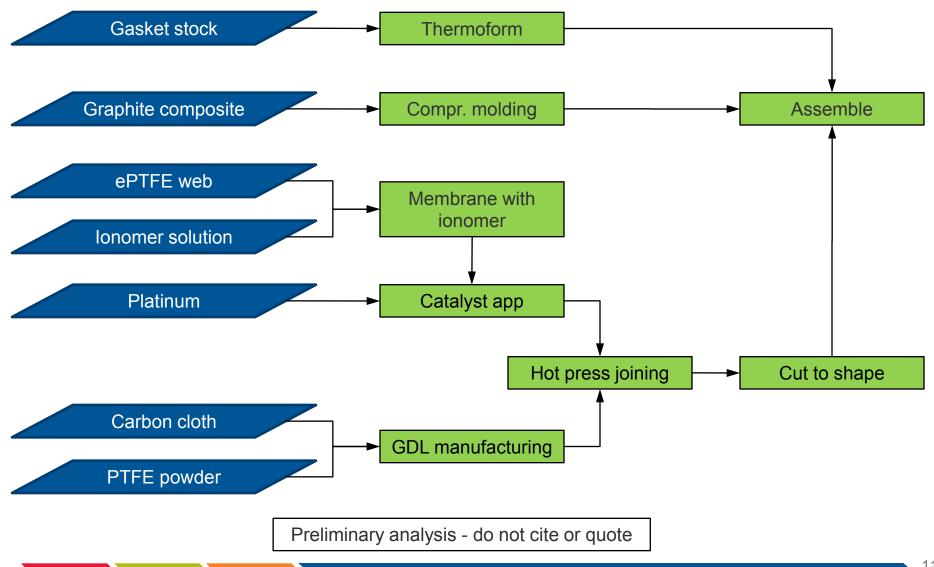
# Technical Accomplishments **System Design**



# Technical Accomplishments System Design and Stack Assumptions

| Design Assumptions                                                                 | Stack                | Value                  |  |
|------------------------------------------------------------------------------------|----------------------|------------------------|--|
| Air-cooled system                                                                  | Specification        |                        |  |
| Bipolar plate material is composite polymer                                        | Net Power Output     | 5 kW                   |  |
| with graphite                                                                      | Gross Power Output   | 7 kW                   |  |
| Membrane is reinforced with ePTFE base                                             | Cell Voltage         | 0.65 V                 |  |
| 77 cells in stack producing total of 5 kW net                                      | Current Density      | 1 A/cm <sup>2</sup>    |  |
| output                                                                             | Stack Voltage        | 50 V                   |  |
| Membrane size is 230x135 mm (9.1x5.3 in)<br>with 175x80 mm (6.9x3.1in) active area | Number of Cells      | 77                     |  |
| GDL and catalyst are applied to entire                                             | Active Area per Cell | 140 cm <sup>2</sup>    |  |
| membrane and not just the active area                                              | Power Density        | 650 mW/cm <sup>2</sup> |  |
| No separate humidification is required                                             |                      |                        |  |
| 0.4 mg/cm <sup>2</sup> total Platinum loading                                      |                      |                        |  |
|                                                                                    |                      |                        |  |

#### Technical Accomplishments **Methodology for Calculating Manufacturing Costs**


- Use the Boothroyd-Dewhurst estimating software
- Employed standard process models whenever they exist
  - Gaskets, end plates
- Developed custom models as needed
  - Parametric equations running behind BDI DFMA<sup>®</sup> user interface
  - Models based on both fundamental and empirical formulations

| 🗅 🍃 🔲 🏪   🤊 💥 🐚 🛍 🥒   📎 📎                                                                                                                                                                                                                                                                                                                                                                                         | .   140 🖪   👕   🦻                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bipolar plate anode produced by Compression molding  Setup/load/unload Preform Compression mold Post bake Driginal                                                                                                                                                                                                                                                                                                | Parts per cycle     1       Raw material cost, \$/kg     11.01       Material density, g/cm^3     1.9       Press temperature, deg C     160       Press time, s     180       Required compression pressure, kg/cm^2     420       Batch size     5.000       Overall plant efficiency, %     85       Machine rate, \$/hr     25 |
| Cost results, \$ Previous Current<br><u>Galculate</u> material 2.31 2.31<br>setup 0.02 0.02<br>process 3.56 3.56<br>rejects<br>piece part 5.89 5.89<br>tooling 0.50 0.50<br>total 6.39 6.39<br>Tooling investment 100,000 100,000<br>These results are not based on a standard cost model<br>from Boothroyd Dewhurst, Inc. They are based on a<br>user process cost model added by Battelle Memorial<br>Institute | Labor rate, \$/hr 45<br>Energy cost, \$/kWh 0.07<br>Picture<br>Load Clear Scale to fit<br>Transparent<br>Notes                                                                                                                                                                                                                     |

Battelle



#### Technical Accomplishments Manufacturing Process Overview Diagram



#### Technical Accomplishments Material and Process Assumptions

| Material                     | Cost (\$) | Measure        |
|------------------------------|-----------|----------------|
| Platinum                     | 1100      | troy oz        |
| ePTFE web                    | 5         | m <sup>2</sup> |
| Nafion <sup>®</sup> NR50     | 250       | kg             |
| Carbon cloth                 | 50        | m <sup>2</sup> |
| Carbon powder                | 18        | kg             |
| PTFE polymer                 | 18        | kg             |
| BMC 940 for<br>Bipolar Plate | 11        | kg             |

- Catalyst ink composition:
  - 32% platinum
  - 48% carbon powder
  - 20% Nafion<sup>®</sup>
- Catalyst loading:
  - Anode: 0.1 mg/cm<sup>2</sup>
  - Cathode: 0.3 mg/cm<sup>2</sup>

| Process Assumptions                                                 | Parameter                 |  |  |
|---------------------------------------------------------------------|---------------------------|--|--|
| Membrane manufacturing process                                      | Roll-to-roll              |  |  |
| Process line speed                                                  | 10 m/min                  |  |  |
| Roll length                                                         | 1000 ft                   |  |  |
| ePTFE roll width                                                    | 1 m                       |  |  |
| Carbon cloth                                                        | 1 m                       |  |  |
| Overall plant efficiency                                            | 85%                       |  |  |
|                                                                     |                           |  |  |
| Process Assumptions                                                 | Value                     |  |  |
| Process Assumptions Scrap rate                                      | Value<br>Varies           |  |  |
| ·                                                                   |                           |  |  |
| Scrap rate                                                          | Varies                    |  |  |
| Scrap rate<br>Inspection steps included in processing               | Varies<br>None            |  |  |
| Scrap rate<br>Inspection steps included in processing<br>Labor cost | Varies<br>None<br>\$45/hr |  |  |

\*note that energy cost of high power machines is included in processing cost

3

1

Operators on membrane line

Operators on all other lines

Batte

The Business of Innovation



# Technical Accomplishments Scrap/Reject Rate Assumptions

| Scrap/Reject Rates       |      |  |  |  |  |  |
|--------------------------|------|--|--|--|--|--|
| Membrane fabrication     | 30%  |  |  |  |  |  |
| Catalyst application     | 30%  |  |  |  |  |  |
| GDL fabrication          | 30%  |  |  |  |  |  |
| MEA Hot Pressing         | 5%   |  |  |  |  |  |
| Slit to width            | 0.5% |  |  |  |  |  |
| Slit and cut             | 0.5% |  |  |  |  |  |
| Compression molding      |      |  |  |  |  |  |
| Pre-form                 | 0.5% |  |  |  |  |  |
| Mold                     | 1%   |  |  |  |  |  |
| Post bake                | 1%   |  |  |  |  |  |
| Die cast end plate       |      |  |  |  |  |  |
| Die casting              | 0.5% |  |  |  |  |  |
| Thread tapping           | 0.5% |  |  |  |  |  |
| Testing and conditioning | 5%   |  |  |  |  |  |

### Technical Accomplishments Capital Cost Assumptions


| Capital Cost                                                                 | Unit Cost           | Units     | Total Cost<br>(2010\$)     | Assumption/Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------|---------------------|-----------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Factory Total Construction<br>Cost                                           | 250                 | \$/sq.ft. | 4,034,780                  | Includes Electrical Costs (\$50/sq.ft.). Total plant area based on line footprint plus 1.5x line space for working space, offices, shipping, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Production Line Equipment<br>Cost (2,000 units/year,<br>constant production) | varies by component |           | 9,665,000                  | Year 1 (2,000 units) – 1 Membrane mfg. line, 1 Catalyst Application line, 1 GDL Manufacturing line, 1 Membrane slit line, 1 GDL slit line, 1 MEA press, 1 MES slit and cut line, 1 Bipolar plate press, 1 Assembly station, 2 Testing stations. (\$9.6M)                                                                                                                                                                                                                                                                                                                                                                                                      |
| Additional Line Equipment<br>Cost (Increased Production<br>Levels Years 2-6) | varies by component |           | 28,865,000                 | Year 2 (4,500 units/year) - 1 Bipolar plate press, 2 Testing stations. ( <b>\$800K</b> )<br>Year 3 (10,000 units/year) - 2 Bipolar plate presses, 1 Assembly station, 5<br>Testing stations. ( <b>\$1.65M</b> )<br>Year 4 (21,000 units/year) - 3 Bipolar plate presses, 3 Assembly Stations, 9<br>Testing Stations. ( <b>\$2.55M</b> )<br>Year 5 (46,000 units/year) - 1 MEA Press, 1 MEA slit and cut, 9 Bipolar plate<br>presses, 5 Assembly Stations, 21 Testing Stations. ( <b>\$8.2M</b> )<br>Year 6 (100,000 units/year) - 1 MEA press, 1 MEA slit and cut, 18 Bipolar<br>plate presses, 10 Assembly Stations, 45 Testing Stations. ( <b>\$15.7M</b> ) |
| Forklifts                                                                    | 25,000              | \$/lift   | 50,000                     | Assumes 2 forklifts with extra battery and charger.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cranes                                                                       | 66,000              | \$/crane  | 198,000                    | 5 ton crane, 20' wide per line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Real Estate                                                                  | 125,000             | \$/acre   | 125,000                    | Assumes 1 acre of vacant land, zoned industrial Columbus, OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Contingency                                                                  | 10% CC              |           | 1,407,280                  | Construction Estimation Assumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total                                                                        |                     |           | 15,780,060 –<br>44,645,060 | Baseline CC (2,000 units/year) – Max CC (100K units/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# Technical Accomplishments Stack Manufacturing Cost Summary

| Stack Component       | 2010 cost<br>per stack |       | Qty per stack | Qty per cell | 2010 cost each |       |
|-----------------------|------------------------|-------|---------------|--------------|----------------|-------|
| Bipolar plates        | \$                     | 876   | 154           | 2            | \$             | 5.69  |
| MEA                   | \$                     | 1,053 | 77            | 1            | \$             | 13.98 |
| Cathode side gasket   | \$                     | 49    | 77            | 1            | \$             | 0.64  |
| Anode side gasket     | \$                     | 52    | 77            | 1            | \$             | 0.68  |
| Cooling gasket        | \$                     | 49    | 77            | 1            | \$             | 0.64  |
| End gaskets           | \$                     | 1     | 2             |              | \$             | 0.64  |
| Tie rods and hardware | \$                     | 40    | 8             |              | \$             | 5.00  |
| End plates            | \$                     | 30    | 2             |              | \$             | 14.88 |
| Stack assembly        | \$                     | 41    | 1             |              | \$             | 40.89 |
| Stack total           | \$                     | 2,215 |               |              |                |       |

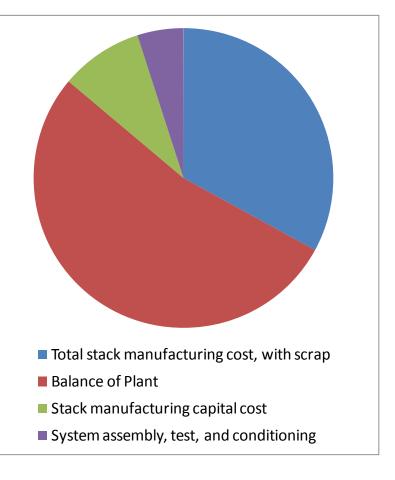
All costs include manufacturing scrap

# Stack Component Manufacturing Cost Breakdown (includes scrap cost)



**Battelle** The Business of Innovation

#### **Battelle** The Business of Innovation


#### Technical Accomplishments Balance of Plant (BoP) Cost Summary

| Component                   | Unit Cost*  |
|-----------------------------|-------------|
| Air Filter (Cooling Air)    | \$28        |
| Fan (Cooling Air)           | \$155       |
| Blower (Cooling Air)        | \$150       |
| Air Filter (Cathode Air)    | \$83        |
| Blower (Cathode Air)        | \$320       |
| Flow Meter (Cathode Air)    | \$99        |
| Relief Valve                | \$130       |
| Anode Purge Valve           | \$40        |
| Stack Temperature Sensor(s) | \$18        |
| Stack Current Sensor        | \$15        |
| Stack Voltage Sensor        | \$60        |
| DC/DC Converter             | \$1,250     |
| Fuel Cell ECU               | \$380       |
| H2 Shutoff Valve            | \$55        |
| Enclosure Heater            | \$30        |
| Enclosure Heater Relay      | \$3         |
| Assorted Plumbing/Fittings  | \$160       |
| Buss Bar                    | <b>\$16</b> |
| H2 Sensor                   | \$124       |
| Wiring and Connectors       | \$50        |
| Assembly Hardware           | \$30        |
| Frame                       | \$207       |
|                             |             |
| Total                       | \$3,403     |
| \$/kW (net)                 | \$681       |

\*Based on quantity of 2,000 units

## **System Manufacturing Cost Summary**

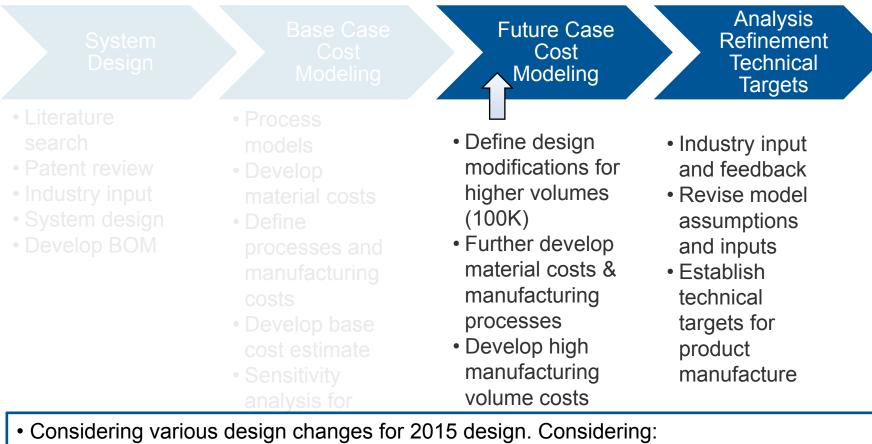
| Description                                | Value    |
|--------------------------------------------|----------|
| Total stack manufacturing cost, with scrap | \$ 2,215 |
| Stack manufacturing capital cost           | \$ 570   |
| ВОР                                        | \$ 3,403 |
| System assembly, test, and conditioning    | \$ 318   |
| Total system cost                          | \$ 6,506 |
| System cost per KW <sub>net</sub>          | \$ 1,301 |



\* Stack cost based on high quantity manufacturing process in place. BoP cost based on purchase price for 2,000 units.

## **Sensitivity Analysis**

#### **Selected Material Cost Sensitivities**


| Stack area   | 2.30 m <sup>2</sup> |                     |      |                    |        |          |                        |
|--------------|---------------------|---------------------|------|--------------------|--------|----------|------------------------|
| Stack output | 7                   | kW <sub>gross</sub> |      |                    |        |          |                        |
|              |                     |                     |      |                    | Change |          |                        |
|              | Curren              | t Value             | Va   | lue                | \$/m²  | \$/stack | \$/kW <sub>gross</sub> |
| Carbon cloth | 50                  | \$/m <sup>2</sup>   | -10  | \$/m <sup>2</sup>  | -14.29 | -65.67   | -9.38                  |
| Nafion®      | 250                 | \$/kg               | -50  | \$/kg              | -3.75  | -8.62    | -1.23                  |
| Pt Loading   | 0.4                 | mg/cm <sup>2</sup>  | -0.1 | mg/cm <sup>2</sup> | -50.82 | -116.77  | -16.68                 |
| Pt Cost      | 1100                | \$/tr.oz.           | +100 | \$/tr.oz.          | +18.37 | +42.21   | +6.03                  |
| PTFE         | 18                  | \$/kg               | -5   | \$/kg              | -4.5   | -10.34   | -1.48                  |
| ePTFE web    | 5                   | \$/m <sup>2</sup>   | +5   | \$/m <sup>2</sup>  | +7.14  | +16.41   | +2.34                  |

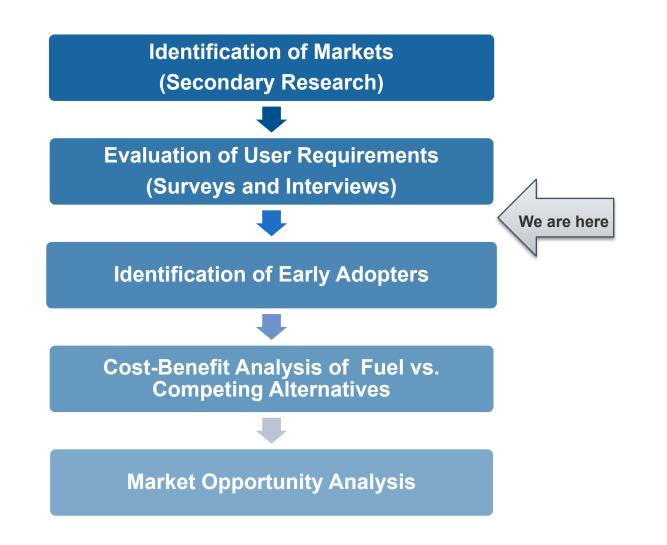


#### Summary Opportunities for Cost Reduction • Primary opportunities for cost reduction

- Bipolar Plates
  - Material and process
  - Potential alternatives needing technology advancements
    - Stamping of metal plates
    - Injection molding
- MEA material costs
  - Carbon cloth
  - Platinum loading
- DC/DC converter
- Continuing to gather data, refine costs and update model
- Considering various design changes for 2015 design. Top candidates under consideration include:
  - metal bipolar plates
  - reduced catalyst loading

# Future Work **Next Steps**




- Metal bipolar plates
- Reduced catalyst loading
- Seeking industrial input for other considerations

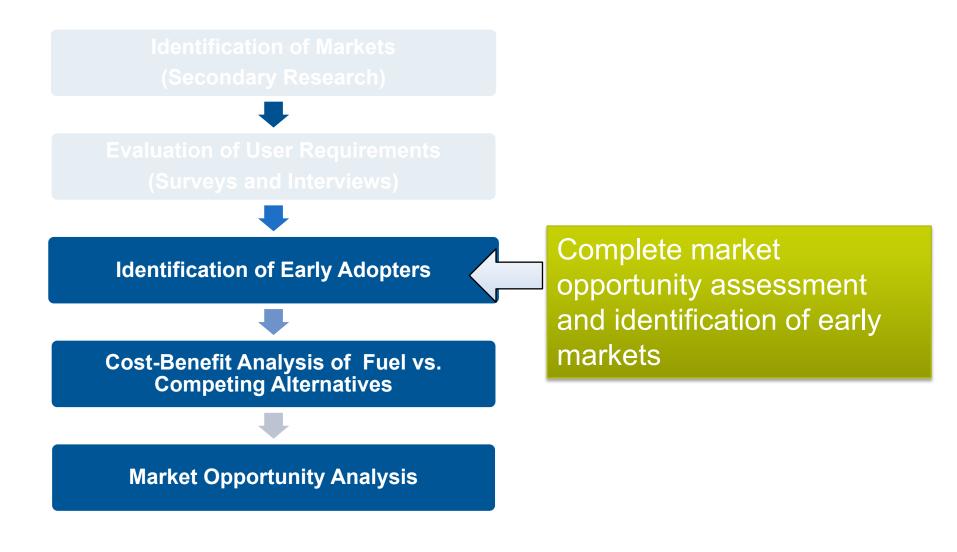


### MicroCHP Technical Accomplishments



### Approach Economic and Market Opportunity Assessment for MicroCHP






#### Summary MicroCHP Market Analysis

| Parameter                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology Application                                  | Combined heat and power for residential – single and multi-family dwellings and small commercial applications                                                                                                                                                                                                                                                                                                                       |
| Current Market                                          | <ul> <li>In 2008, global micro-CHP markets reached 100,000 units</li> <li>Annual commercial sales comprised of 33.5 MW of micro-CHP and a market size of \$245 million</li> </ul>                                                                                                                                                                                                                                                   |
| Target Markets for PEM<br>Fuel Cells in the U.S.        | <ul> <li>Areas with high electricity rates and high heat requirements</li> <li>Regions with high spark spread</li> <li>Areas where the grid is not reliable, remote locations with no power distribution</li> <li>Consumers interested in 'being green' – reducing their carbon footprint, consumers interested in 'high-tech' products</li> </ul>                                                                                  |
| Competing Alternatives                                  | <ul> <li>Photovoltaics, Solar Thermal, Boilers, Heat pumps</li> </ul>                                                                                                                                                                                                                                                                                                                                                               |
| Size of Systems                                         | • 3-5 kW                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cost of PEM Fuel Cells<br>Vs. Competing<br>Alternatives | PEM Fuel Cell - \$35-50,000<br>ICE - \$6-22,000<br>Boilers, heat pumps, and gas fired furnaces - \$5000 to 8,000<br>PV - \$7,000 - \$9,000                                                                                                                                                                                                                                                                                          |
| Market Drivers                                          | <ul> <li>Cost</li> <li>Reliability and durability</li> <li>Ease of use</li> <li>Familiarity and confidence in product</li> </ul>                                                                                                                                                                                                                                                                                                    |
| Market Requirements                                     | <ul> <li>Grid parallel operation</li> <li>Overall unit efficiency</li> <li>High power to heat ratio</li> <li>Well designed system - optimal sizing (power-to-heat ratio) to ensure optimal performance (engineering)</li> <li>Intuitive control interface for end user</li> <li>Commissioning and integration with rest of the heating system</li> <li>Lifetime of 15 years (total operating time – 60,000-80,000 hours)</li> </ul> |



# Future Work Next Steps

