

Diesel Fueled SOFC System for Class 7/Class 8 On-Highway Truck Auxiliary Power DE-FC36-04G014318

Dan Norrick PI Cummins Power Generation June 8, 2010

FC061

Collaborations

Cummins Power Generation

- Balance of Plant (blower, fuel supply, plumbing)
- Controls & power electronics
- System integration
- Sub and system testing
- Vehicle simulation demonstration

Protonex LLC

- "Hot Box" SOFC modules, heat exchange, high temperature insulation
- CPOX diesel fuel reformer
- Sub-system testing

International Truck & Engine Corp.

Vehicle Requirements, Systems, Interface

Minneapolis, MN

Broomfield, CO

Relevance Truck APU's

Studies indicate that approximately 500,000 class 7/8 trucks currently travel more than 500 miles from base on their daily trips

It is estimated that these trucks may spend up to 300 days per year idling for 8 hours per day at overnight rest stops to provide heat and power for the sleeper cab

 Under these conditions idling trucks consume, at 0.8 gals of fuel per idling hour, 960 million gallons of diesel fuel

 Significant amounts of NOx, CO₂ and PM are produced under these engine idling conditions

 Elimination of truck engine idling by providing heat and power in a more efficient manner, (such as a truck mounted APU), has the potential to conserve large amounts of diesel fuel and significantly reduce exhaust emissions

Relevance

Advantages

- High efficiency, flat efficiency characteristic vs load
- Extremely low emissions
- Relatively simple fuel reformation for diesel fuel
- No water management in stacks
- Potential for low / no precious metals (cost)
- No external cooling required
- ✓ High quality (high temperature) single waste heat stream for CHP

Barriers

Thermal management: start up, shut down, transients, cycling

begradation

- Zero net water diesel fuel reforming
- b Mechanical robustness
- Cost the "chicken-n-egg" problem
 - SOFC's will be cost effective at full production volumes
 - Making initial production affordable is a challenge

This presentation contains no proprietary, confidential, or otherwise restricted information

Solid Oxide Fuel Cells

for Truck APU's

♦ To be addressed

Overview and Objectives

Timeline

- Project start: 9/1/2004
- Placed on hold FY 2006; restarted Aug 2007
- Contract end: 12/31/2009
- Completed: 2/26/2010

Budget

- Project funding (complete)
 DOE = \$3,225,611
 - ♦ Contractor = \$1,765,678

Barriers

- Waterless reforming of Ultra Low Sulfur Diesel (ULSD) fuel
- Transient operation of solid oxide fuel cell (SOFC) system
- Power density, specific power (W/L, W/kg)
- Shock and vibration tolerance

Partners

- Cummins Power Generation (project lead, demonstration)
- Protonex LLC (SOFC power module)
- International Truck and Engine (vehicle requirements, systems, interface)

Objectives and Results

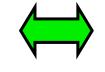
On-vehicle demonstration and evaluation of a SOFC APU with integrated on board reformation of diesel fuel

Simulated vehicle demonstration with loads including air conditioner, battery charging

Develop transparent method of water management for diesel fuel (ULSD) reformation

Operated dry CPOX on pump ULSD without water supply or recycle

Develop controls to seamlessly start, operate and shutdown SOFC APU


Some manual intervention required during transients

Evaluate hardening the SOFC APU to enable it to operate reliably in the on-highway environment

System designed to provide isolation to road vibration and shock, not tested

Develop overall system for performance, size, cost and reliability targets

System form factor consistent with commercially available anti-idle solutions

Approach

	Analysis and design	Sub-system test and development	Laboratory system testing
Balance of Plant	Supply and Regulation: Cathode air Anode air Fuel	Cathode air Anode air supply Fuel supply	BOP Assembled Wired Checked
Controls & Power Electronics	Control Fluid flows Load response Power Electronics DC Link Load management	Bench testing Control loop responses System simulation	Integrate MCU and control software Simulated system testing Demo of system operation including Automated stack temperature control Fueling and O/C ratio control
SOFC, Hot Box Fuel Reformer	Module scale-up Thermal analysis CPOX chemistry	Module operational bench testing	Stack simulators utilized for initial checkout Functional SOFC stacks assembled tested in hot box
System Integration & Packaging	General arrangement Shock & Vibration attenuation	Solid modeling (CAD) Stereolithography Vibration testing at module level	Validate system performance Operation across load range Transient response Efficiency
Vehicle Integration	Systems integration 12V DC bus 120V AC bus Fuel supply Coolant loop Mount & Connect	Shock & Vibration attenuation system designed and incorporated in prototype but not tested	12V and 120VAC Load Testing Operated truck air conditioner Battery charging Lighting Waste Heat Recovery (CHP)

Technical Accomplishments and Progress Milestones

Qtr FY	Milestone		
Q4 FY07	Program re-start		
Q1 FY08	Specifications finalized		
Q4 FY08	Protonex delivery of Module 1		
Q2 FY09	System BOP design complete		
Q1 FY10	System checkout ready for testing		
Q2 FY10	Protonex delivery of SOFC sub-assemblies		
Q2 FY10	Demonstration Testing Complete		

Approach Modular Concept

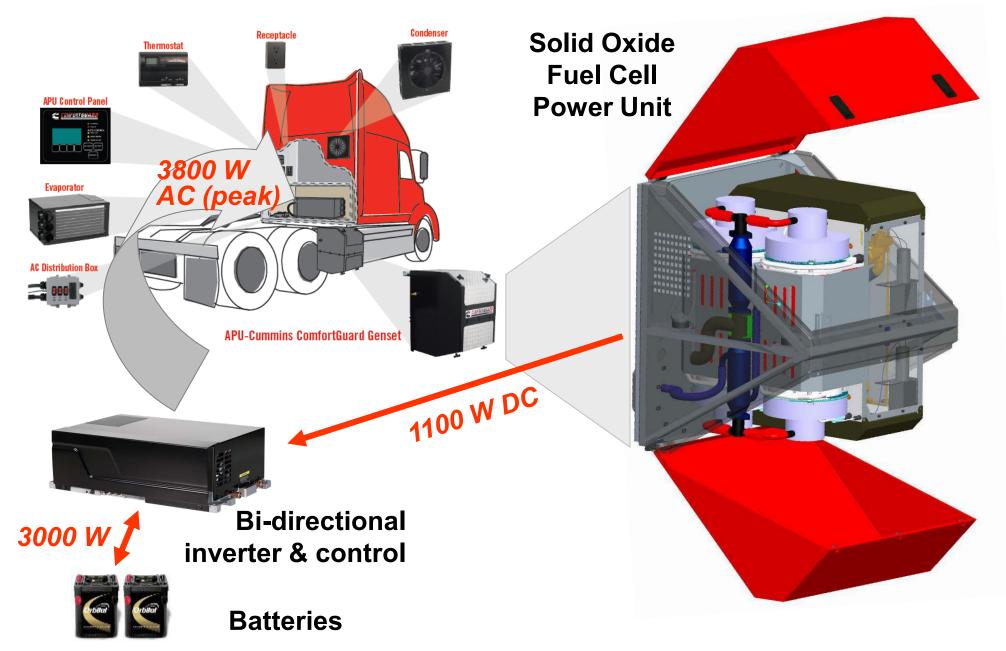
- PTX- developed tightly integrated hot module design
- Hot module includes:
 - Thermally integrated dry CPOX fuel processor
 - stack §
 - Recuperator
 - 🌭 Tail-gas combustor
 - Mechanical structure
 - 🍫 Insulation
- Final modules delivered to CPG for demonstration testing Feb 2010

320 mm

From model

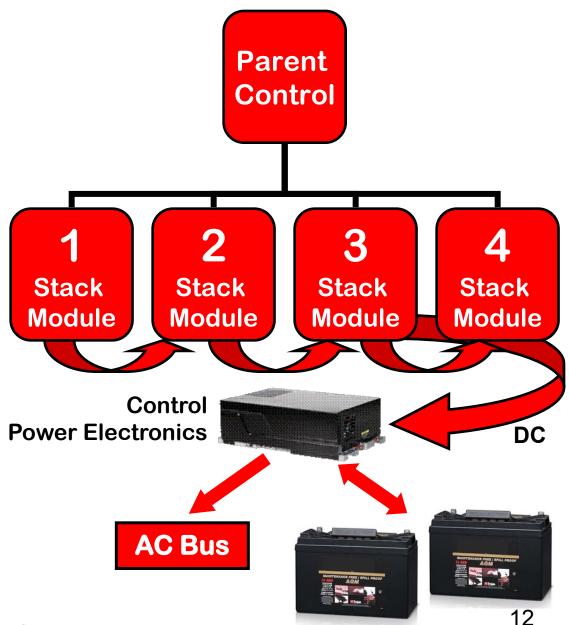
to hardware

250 mm


Approach SOFC System Design

- Initial decision on "4-pack" module arrangement
- Replicated module concept met initial program objectives for achievable module scale-up, projected power requirement
- Existing PTX 250 W module scaled to 450 W gross
- "4-pack" of SOFC modules yields > 1100 W DC net system power, enough to simultaneously run air conditioning and lighting
- Master control with CAN Bus connected replication of control elements
 - 🌭 1 "parent" board
 - ♦ 4 "child" boards, one per module
- System packaging provides simple connection between hot zone modules, cold balance of plant, controls, power electronics
- SOFC assembly locates to truck frame rail
- Batteries and power electronics located separately on vehicle

Approach System Arrangement



Approach System Balance of Plant Controls & Power Electronics

Modular Control Architecture

- Independent operation and regulation of four stack modules
- b Common cathode air source
- Anode air boosted from cathode, module by module flow regulation
- b Independent fuel supplies
- Adaptable to changes in system feature scope and scale
- Power Electronics (output stage)
 - b High Efficiency DC-DC Boost
 - Modified commercial (CPG) DC-AC inverter

Interfaced over common CAN bus for current mode control of stack modules

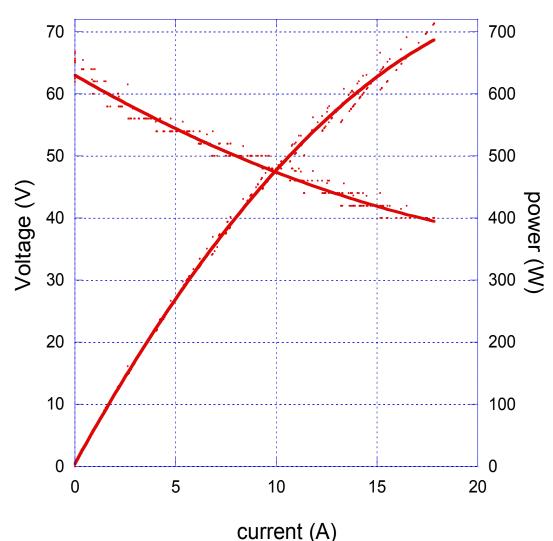
Technical Accomplishments and Progress

System Status

	Rated Power (Watts)	Weight Kg	Volume L	Fuel Consumption gph avg	Noise dB(A) @ 3m
Diesel APU	4000 Available	170	235	0.27 @ 1500 W	75dB(A)
SOFC System Total	3800 Peak AC 1100 Net DC 820 Net AC	197 Total	360 Total	0.24 @ 1100 W	55 dB(A) (est.)
	SOFC Unit	120	304	N/A	N/A
Control Power Electronics		29	31	N/A	N/A
Batteries 2 x Group 24		48	25	N/A	N/A

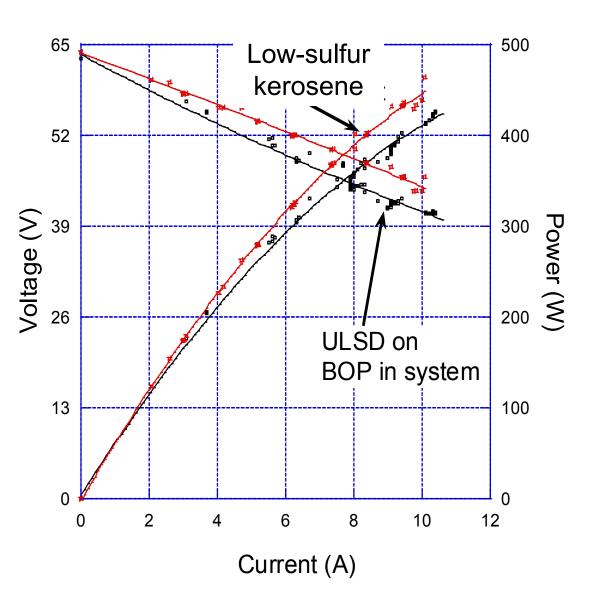
Technical Accomplishments and Progress Stack Design

- 4 modules, 66 cells/module, series connection
- Target performance for 4-module assembly


parameter	Design 1 target	Demonstration	
Gross power 4 modules in series	15.3 A @ 171 V = 2600 W (650 W / module)	10.0 A @ 168 V = 1680 W (420 W / module)	
OCV 4 modules in series	264–276 V (>65V / module)	264–276 V (64-66v / module)	
BOP parasitic power (system)	200 W	< 450 W	
System Efficiency DC/LHV	21% net @ (2400 W net)	11% net @ (1100 W net)	
Fuel utilization	70%	45%	

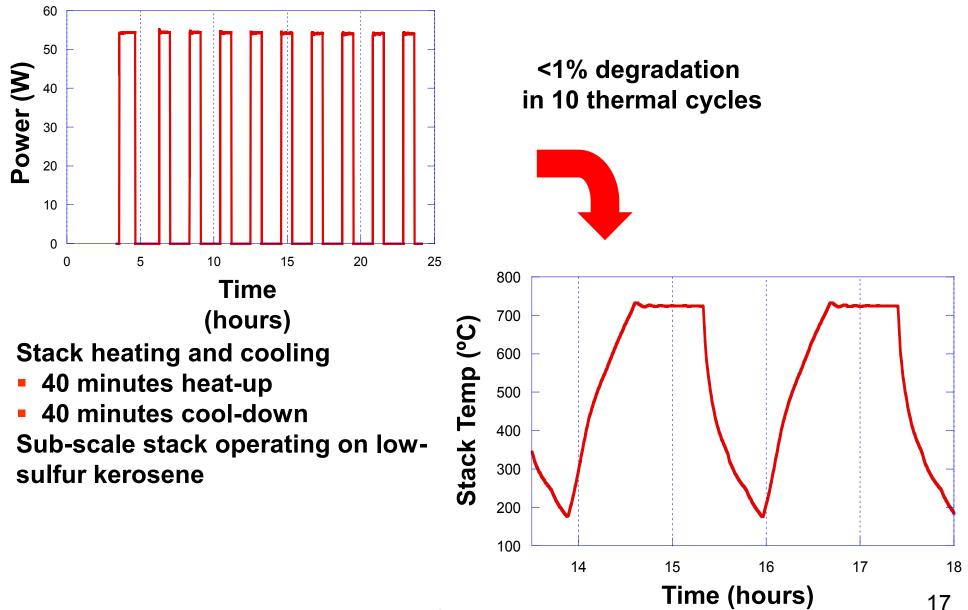
Technical Accomplishments and Progress Performance – Full Scale Stacks

- Integrated fuel processor / stack / HX / tailgas-combustor
- Single insulation package, one thermal zone
- Low-cost (simple geometry, no exotic alloys)
- H2/N2 operation in furnace
- Peak power
 - >600 W per stack
 - 713 W highest recorded
- Power at nominal operating conditions 520-570 W
- Low cost fabrication/ assembly methods developed
- Multiple stacks built -- good stack-to-stack consistency



Technical Accomplishments and Progress

Performance – Liquid Fuel


- Operation on low-sulfur kerosene with mass flow controllers in laboratory
 - Identical test facility with ULSD showed results within 2%
- Performance on BOP in final system test showed 8% difference with low-sulfur kerosene results in laboratory at 10A
- 410 450 W at nominal operating conditions
- Difference with H₂/N₂ performance is thermal limitation on fuel flow and O/C
- Optimizing insulation with tube configuration could significantly increase performance

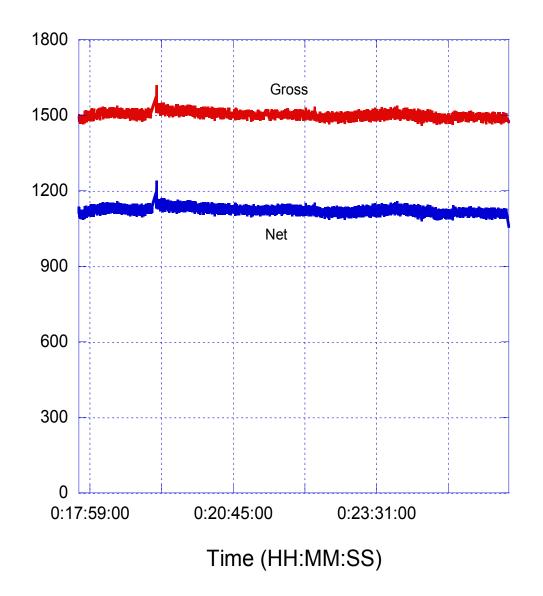
Technical Accomplishments and Progress Sub-scale Stack thermal cycling

Technical Accomplishments and Progress Fuel Processor

- Simple fuel processor—extremely compact and inexpensive CPOX design
- Demonstrated stable operation of SOFC stack on ULSD with no added or recovered water
- Higher O/C ratio required to avoid carbon formation with ULSD
 - Boundary is sensitive to fuel composition and reactor thermal integration
 - Reformer capable of 1.1 O/C operation; carbon deposition in stack drove 1.3 O/C for demo

Technical Accomplishments and Progress SOFC Module

- Integrated fuel processor / stack / HX / tail-gas combustor
 - Simple geometry
 - Single insulation package, one thermal zone
 - ✤ Low-cost, simple geometry, no exotic alloy parts
- Demonstrated thermally-self-sustaining operation
 - Overall balance good
 - Working to improve axial temperature gradients


Power production

- \sim >600 W per stack on H₂/N₂
- 16% reduction moving from H₂/N₂ to liquid fuel
- Liquid fuel operation
 - thermally limited due to cell performance
 - minor upgrades can significantly increase output
- Demonstrated 14 cycles on liquid fuel
 - (5 low-sulfur kerosene, 9 ULSD)

Protonex Technical Accomplishments and Progress ULSD Operation At CPG

- Results are for 4 modules operating in system on ULSD
- All BOP, controls, and system integration performed by Cummins
- ULSD from the pump for entire test
- Simultaneous operation
 - Air conditioning 仑
 - Simulated cab lighting P
 - Additional DC loading P
 - ower (W) Combined heat and power (CHP) ß generation
- Fully hybridized system
- Chassis and power conditioning based on production hardware
- 11 hours DC, 1.5 hours AC loading
 - > 1520 W **DC** (>1100 W net) Ŕ
 - > 1460 W AC (>820 W net) E,
- Peak power ~1680 W DC (1230 W DC net)

reration Technical Accomplishments and Progress Results vs.Targets

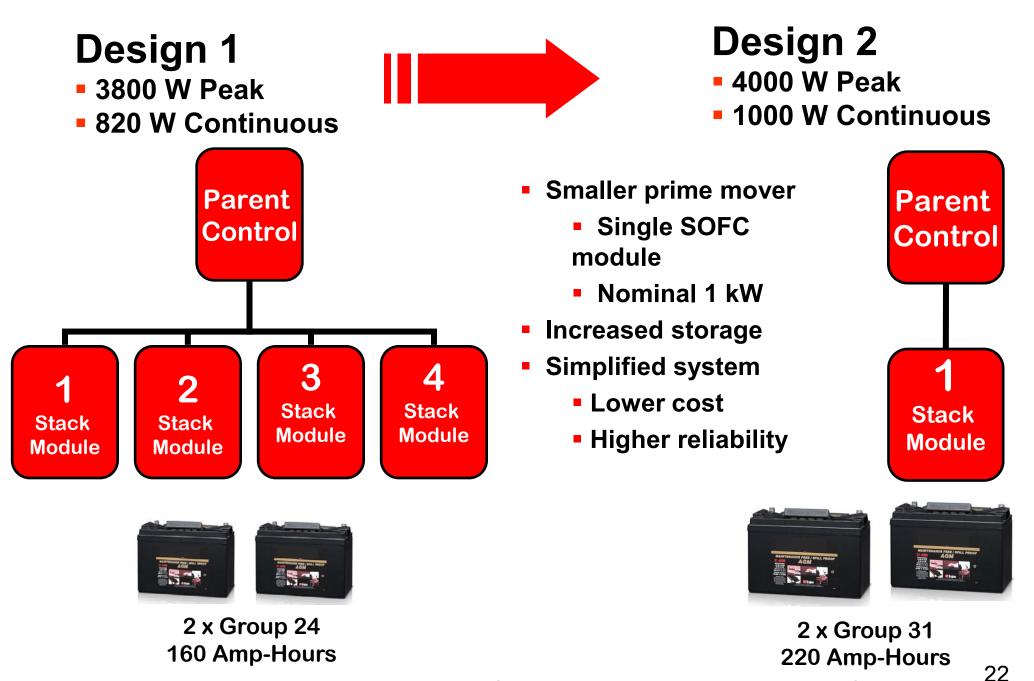
• Tube Performance \rightarrow power, efficiency

- Smaller (previous design) tubes used to estimate gross power target
- ✤ Larger delivered tubes did not meet original specifications
 - Lower power production
 - Reduced performance at higher utilizations
 - Larger statistical performance distribution

■ Thermal limitations → power, efficiency

- Thermal integration design based on tubes with original performance resulted in reduced maximum fuel flow rate
- Significant increases in performance are possible if thermal integration were re-designed to match current tube performance

CPOX → efficiency


Further development needed to optimize carbon-free operation at target O/C ratio

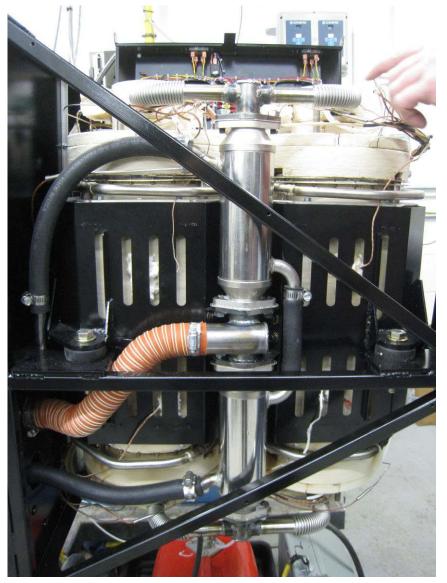
System Integration (BOP) → efficiency

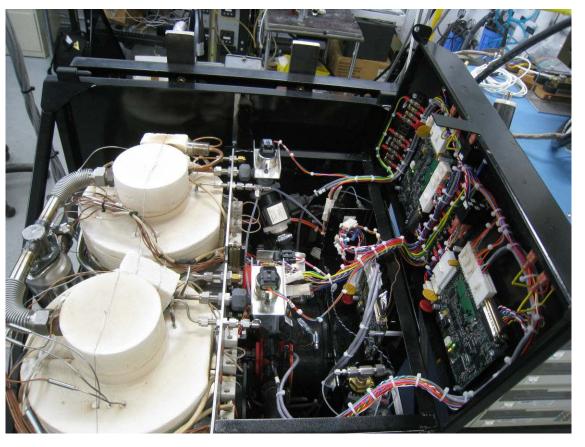
- ✤ BOP sized to original power target (650W / module)
- Lower efficiency operating off design point
- Heat transfer off larger modules required active cooling

Proposed Future Work Design 2 Evolution

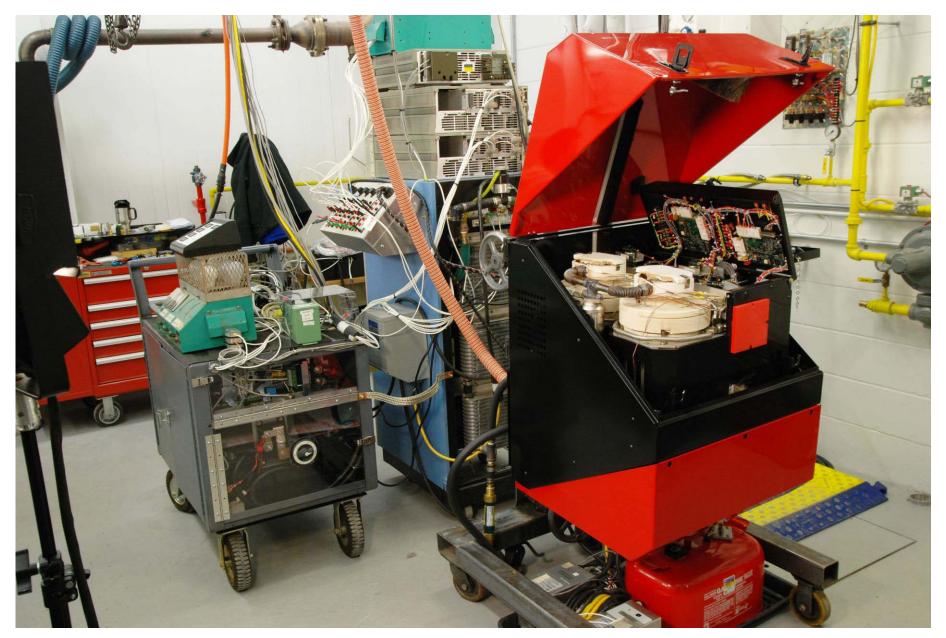
Proposed Future Work Design 2

	Rated Power (Watts)	Weight Kg	Volume L	Fuel Consumption gph avg	Noise dB(A) @ 3m
Diesel APU	4000 Available	170	235	0.27 @ 1500 W	75dB(A)
SOFC System Total	4000 Peak 1000 Continuous	159 Total	198 Total	0.14 @ 1000W	55 dB(A) (est.)
	SOFC Unit	64	140	N/A	N/A
Integrated DC Contr	C-DC Boost,	29	31	N/A	N/A
Batteries 2 X Group 31		66	27	N/A	N/A


Technical Accomplishments and Progress SOFC APU Prototype


Technical Accomplishments and Progress

Exhaust heat recovery


Upper two SOFC modules

CAN-linked controls

Technical Accomplishments and Progress SOFC APU Test Setup

ration Technical Accomplishments and Progress Summary

- Significant progress on waterless reforming of pump ULSD using CPOX
- 1:2 upscaling of thermally integrated tubular SOFC module
- System integration (packaging) consistent with contemporary commercial APU's, including shock and vibration isolation system
- Hybridization of SOFC with batteries utilizing commercially developed power electronics and controls
- Demonstration of an integrated SOFC solution to anti-idling providing DC and AC power plus waste heat recovery for cab and engine heating
- Future and continuing DOE support could accelerate production viability

Acknowledgements

 Cummins Power Generation and Protonex LLC gratefully acknowledge the support of the DOE under Cooperative Agreement No. DE-FC36-04GO14318, and in particular the guidance and support of Dr. David Peterson and Dr. John Kopasz.

 This support does not constitute an endorsement by DOE of the material expressed in this presentation.

 Additionally, the author would like to sincerely thank the team members at CPG and Protonex LLC who have contributed greatly through their technical accomplishments and contributions to this project and presentation.

Charles Vesely (CPG)	Dr. Chuck Booten (PTX)	
Ben Fuchs (CPG)	Dr. Joe Poshusta (PTX)	
Dr. Xin Li (CPG)	Victor Castillo (PTX)	
Dr. Jie Luo (CPG)	Dr. Caine Finnerty (PTX)	
Dr. Madhukar Mahishi (CPG)	Colin Casey (International Truck & Engine)	
Dennis Otremba (CPG)	Glenn Madison (CPG)	