

"Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications"

Mr. Dan Hennessy DELPHI June 8, 2010

Sponsor: U.S. DOE – Hydrogen, Fuel Cells and Infrastructure Technologies

DOE Technical Development Manager: Dimitrios Papageorgopoulos

DOE Project Manager: David Peterson, Ph.D.

Partners: PACCAR, Volvo Trucks North America (VTNA), & Electricore

This work is supporting in part by the U.S. DOE under Cooperative Agreement

DE-FC36-04GO14319

Project ID: FC062

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Agenda

- Overview
- Objectives
- Milestones
- Approach
- Technical Accomplishments and Progress
- Future Work
- Summary

Overview

Timeline

- September 2004
- April 2010

(Project was on 18 month hold from 2006-2007)

100% Complete

Budget

- Total project funding
 - DOE \$3,000,000
 - Delphi \$1,750,000
- \$ 981,591 received in CY09
- \$ 79,384 planned for CY10

Barriers

- Barriers addressed:
 - Sulfur Remediation
 - Reformer Operation
 - Stack Sensitivity
 - Carbon Issues
 - Catalyst plugging
 - Combustion Start plugging
 - System Pre-combustion
 - System Electrical Integration

Partners

- Paccar and Volvo Truck
- Electricore Inc.

Relevance - Solid Oxide Fuel Cells Market Opportunity

Recreational Vehicles Diesel, LPG

Truck and Trailer Refrigeration Diesel

US Military JP-8

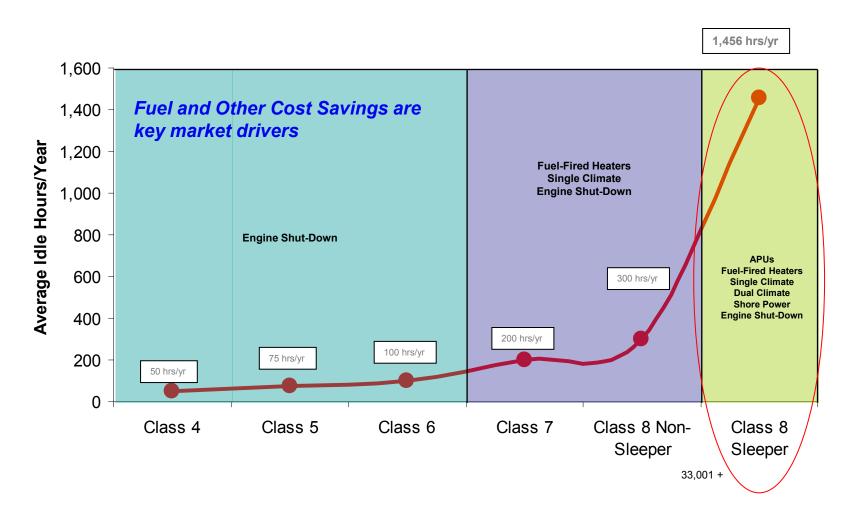
MARKET DERIVATIVES

European mCHP & CHCP

Natural Gas

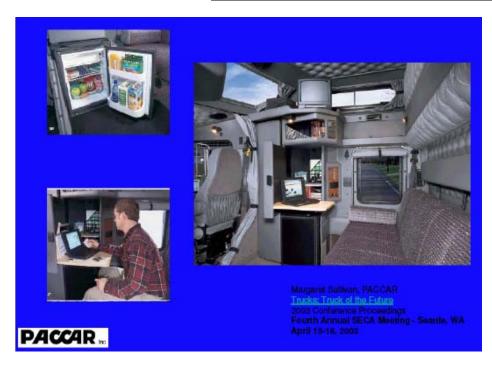
US Stationary – APU & CHPCommercial Power Natural Gas, LPG

Natural Gas



FutureGen Powerplant Coal Gas

Heavy Duty Truck represents Delphi's target initial development & application

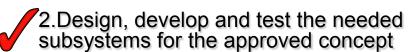

Relevance - Heavy Duty Truck Market Idling Time

Relevance - Heavy Duty Truck Market Drivers

Increasing Cab Electrical Loads

OEM load profiles identify potential power requirements of 2.5kW and 4.0kW respectively

In-Cab Appliances Include


- CB Radios
- Cell Phones
- Televisions
- Refrigerators
- Stereos
- Lamps
- DVD / VCR Player
- Computer
- Microwave
- Coffee Maker
- Electric Blankets
- Electric AC / Heater

Relevance - Objectives

Complete a 48-month contract with the DOE EERE:

1.Develop APU system requirements and concepts with major truck OEMs input

- Verification testing of brass-board APU system
- 2. Form and packaging design
- 3. Review Phase 2 system specification

3.Build and demonstrate a diesel fueled truck APU system

	DOE 2010	DOE 2015	Delphi
	APU	APU	Proposed
	Technical	Technical	SOFC APU
	Targets	Targets	Targets
System cycles #	150	250	150
Net System Power (kW)	≤ 5	≤ 5	3
Specific Power (W/kg)	25	25	25
Power Density (W/L)	25	25	25
Net System Efficiency	35.0%	40.0%	38.0%
Durability (hrs)	20,000	35,000	20,000
Start Up Time (min)	15-30	15-30	60
Factory Cost (\$/kWe)	\$1,000	\$500	\$1,000
Fuel	US '07	US '07	US '07
ruei	Diesel	Diesel	Diesel

DOE/Delphi SOFC Key Performance Metrics

Meeting these objectives will dramatically increase both the technical and commercial viability of fuel cell APU technology

Approach - Milestones

Month/Year	Milestone and Go/No-Go Decisions	Complete
April 2008	Sub-Milestone Review #2: This milestone focused on the APU design and layout; and Developing the subsystem requirements document and development plan.	100%
Sep. 2008	Sub-Milestone Review #3: This milestone focused on the SOFC APU hardware design and build; Subsystem test fixture hardware development.	100%
April 2009 (As of March 20 th)	Phase 2: Critical Milestone #3 Hardware Design & Development This milestone focused on completion of the SOFC APU hardware build and procurement; Initiation of subsystem hardware testing and design iterations.	100%
August 2009 (As of March 20 th)	Phase 2 Milestone #4 System & Subsystem Design Progress This milestone includes subsystem testing and controls development; Initial SOFC APU system brass board integration and design iteration.	100%

Approach

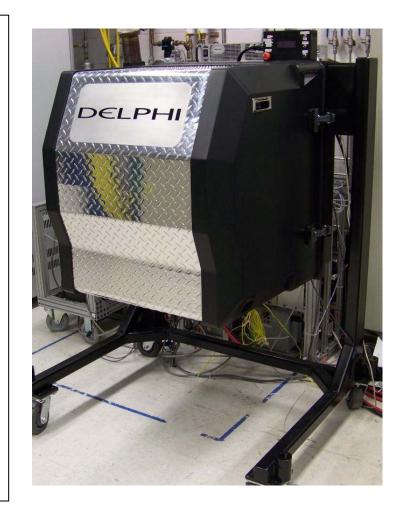
Phase 1: OEM input Collection

- Delphi works with PACCAR and VTNA to understand the APU demands from the OEM point of view
- Information has been collected and is compiled into Delphi Requirements

Phase 2: Design/Build/Development

- 2008 Phase 2 effort is design and component verification period
- Late Phase 2 work will include a brass-board system build and test (2009)
- OEM involvement will be reduced until Phase 3

Phase 3: System Integration & Test


- In 2010, system development will use OEM input for test planning
- Conduct bench top testing
- Add in "real-world" profiles from the changing APU marketplace

Heavy Duty Truck SOFC APU

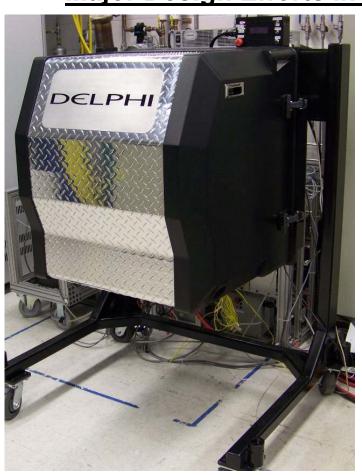
Accomplishments

- 1.4kW Net Peak Load
- 18 ULSD Starts
- 7 Full Thermal Cycles on ULSD
- 18% System Efficiency Demonstrated
- System Noise Benchmark
- Unit tested on Natural Frequency Sine Sweep for Vibration Characterization
- Achieved Better Stack
 Performance Correlation to Stack
 Lab Data

Technical Accomplishments and Progress

Fuel Reformer Development

 The Next Generation Recycle Based Endothermic Reformer was successfully implemented in the Diesel APU



Next Generation Endothermic Reformer

Technical Accomplishments and Progress

Major Design Efforts in Diesel APU Development

- Next Generation Stack Design with increase active area
- Enhanced Thermal Energy Management Controls
- Endothermic Reformer Integration
- Integrated Reformate Desulfurizer with Serviceability Enhancements
- Next Generation 12v Blower Design
- Multi-function Heat Exchanger
- Simplified Integrated Component Manifold

Collaborations

Delphi has teamed with OEM's PACCAR Incorporated and Volvo Trucks North America (VTNA) to define system level requirements for a Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for the commercial trucking industry. As well as Electricore Inc, to help with the overall program management

VOLVO

Volvo Trucks North America (VTNA), Greensboro, NC

PACCAR, Mt. Vernon, WA

Electricore Inc, Valencia, CA

Past / Future Work

2009

- Finish Subsystem Testing and Development Iterations
- Conduct 24 Month Critical Decision Milestone Review (April 2009)
- Complete System Module Testing and Development
- Phase 2 complete Conduct Milestone Review (August 2009)
- Demo Test, 24 hour truck user profile using battery interface and vehicle simulation

<u>2010</u>

- Phase 3 completed (build and demonstrate a diesel fueled truck APU system)
- Close out project

Summary

- Primary Market Drivers
 - Anti-Idling Legislation
 - Emissions Legislation
 - Increasing Heavy Duty Truck Cab Electrical Loads
 - Transportation Fuel Cost
- Completed Component Build and Testing of SOFC APU subsystems
- Completed Bench Top Brass Board Demonstration
- Met both Program Timing and Budget
- Delphi is Committed to Introducing SOFC Diesel Technology in Full Scale Production for Heavy Duty Truck Applications