

Colorado School of Mines

Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

Primary Investigator: Assistant Professor Neal P. Sullivan

Co-Investigators: Professors Robert Braun, Anthony M. Dean, Robert J. Kee, Ryan O'Hayre, Tyrone Vincent

> Colorado School of Mines Golden, Colorado, USA

> > June 8, 2010

Project ID: FC069

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: Improve robustness of hydrocarbonfueled, solid-oxide fuel cells

Colorado School of Mines

Timeline

- Project start date: 7/1/2008
- Project end date: 6/30/2010
- Percent complete: 97%
- Budget
 - Total project funding:
 - DOE Share: \$1,476,000
 - CSM Share: \$362,509
 - Funding received in FY08:
 - **\$1,476,000**
 - Funding for FY09: \$0

- Barriers
 - Durability: Broaden SOFC operating window under hydrocarbon fuel streams
 - Performance: Increase efficiency through system optimization
 - Transient operation: Develop modelpredictive control algorithms
- Industrial Partners
 - Protonex Technology Corporation
 - Provide technical data on solid-oxide fuel cell (SOFC) auxiliary power unit
 - Reactions Systems, LLC
 - Develop hydrocarbon-fuel reforming catalyst and catalyst-support materials
 - CoorsTek, Inc.
 - Provide tubular SOFCs for testing
 - Project Lead: Colorado School of Mines

Objectives / Relevance: Improve performance, durability, and transient response of SOFC systems

FCC

- Task 1: SOFC materials for robust operation on bio-fuels
 - Sulfur- and redox-tolerant anodes broaden SOFC operating windows
 - Nickel-free, perovskite-based anodes using novel cell architectures
 - Proton-conducting ceramic materials
- Task 2: Liquid-hydrocarbon / bio-fuel reforming strategies
 - Examine tradeoffs between reforming approach and cell performance
- Task 3: Create thermally stable fuel-reforming catalysts and supports
 - Next-generation catalysts stable under harsh reforming conditions
- Task 4: Employ system modeling to optimize APU configurations
 - Optimize thermal management through integrative numerical modeling
- Task 5: Utilize model-predictive control to integrate system hardware
 - Improve APU dynamic response, reduce supplementary-storage need

Task 1 Approach: Develop materials to improve SOFC durability under hydrocarbon / alcohol fuels

CFCC

- Create advanced SOFC architectures to improve SOFC durability
 - Anode Barrier and Catalyst Layers improve SOFC robustness under hydrocarbon fuels
 - Milestone: Demonstrate new anode architecture on CH₄ (100%)
 - Milestone: Demonstrate new anode architecture on liquid fuels (90%)
- Develop nickel-free, perovskite-based, next-generation SOFC anodes
 - Nickel-free anode more tolerant to sulfur, redox, and heavy hydrocarbons
 - Milestone: Demonstrate next-generation anode operation on CH₄ (70%)
- Develop proton-conducting SOFC materials
 - Reduce operating temperature to 400 700°C
 - Reduce raw-materials cost through novel ceramic processing
 - Milestone: Fabricate candidate proton-conducting ceramics (100%)
 - Milestone: Evaluate materials stability / durability (85%)

Task 1 Results: Tubular SOFCs with Barrier Layers show expanded operating windows under CH₄ fuel

FCC

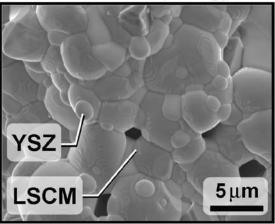
Colorado School of Mines

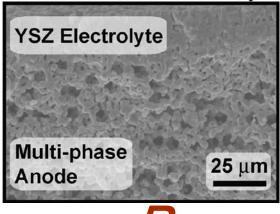
Tubular SOFC equipped with Barrier Layer Inert Barrier Layer within SOFC Silver mesh current collector-Increases H₂O content in anode **Composite Anode-Dense electrolyte-**Promotes internal reforming **Composite Cathode** Barrier layer-Enable deposit-free operation Tubular cell performance under CH₄ / air fuel feed 1.080 1.2 0.25 850℃ **YSZ Barrier Layer** in CoorsTek SOFC O:C = 0.25 0.2 O:C = 0.50e 0.0 1.0 Power Density (W / cm²) H, CO3 * 132 Potential (V) 9.0 8.0 O:C = 0.75 O:C = 1.0 Barrier layet Unode Support 0.4 Fuel 0.05 0.2 RSEK 0 0.2 Current Density (A / cm²) **Protonex**

Colorado Fuel Cell Center

Task 1 Results: Demonstrated materials stability of next-generation SOFC anodes

FCC


- Nickel-free perovskite anode development
 - Multi-phase ceramic anode
 - Sr_{0.8}La_{0.2}TiO₃ (SLT)
 - High electronic conductivity
 - $(La_{0.75}Sr_{0.25})_{0.95}Mn_{0.5}Cr_{0.5}O_3 (LSCM)$
 - Internal reforming
 - Yttria-stabilized zirconia (YSZ)
 - Thermal-expansion matching w/ electrolyte
- Multi-phase stability established
 - No Lanthanum-Zirconate phases formed
- Open pore structure established
 - Optimal morphology for gas transport

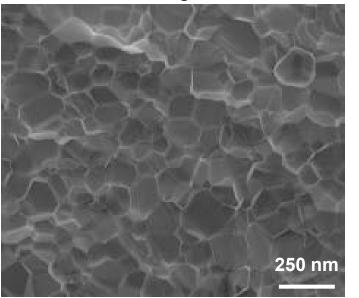


Colorado School of Mines

Micrograph of multi-phase perovskite morphology

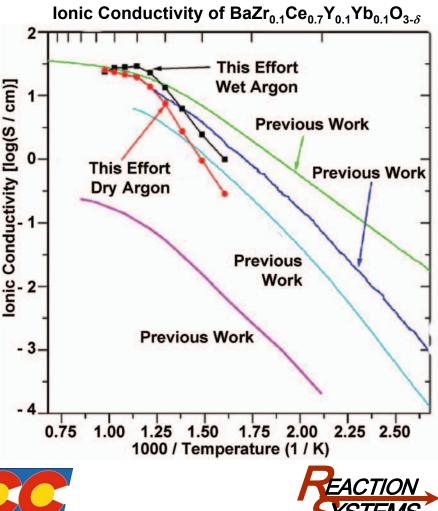
Micrograph of tubular perovskite based anode w/ YSZ electrolyte

Task 1 Results: Proton-conducting ceramics show near-record conductivities at 1/10th fabrication cost

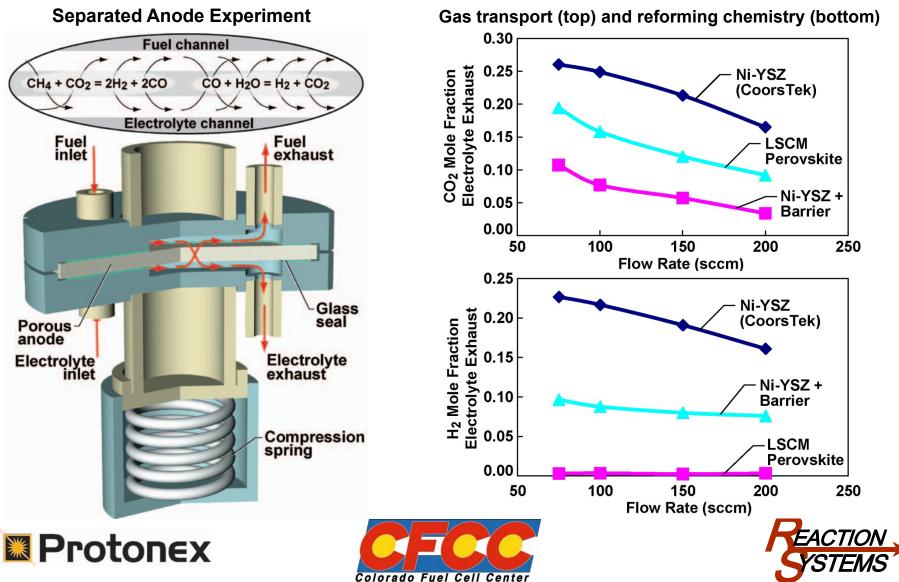


CFCC

Colorado School of Mines


- Barium-cerate / zirconate (BCZY) materials
 - BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-δ}
 - Solid-state reaction sintering
 - Lower processing temperature
 - Lower materials cost

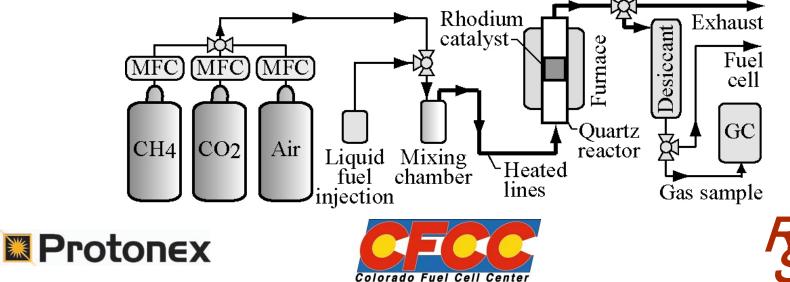
BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-δ} morphology after sintering at 1450°C



Task 1 Results: Characterized gas transport and internal-reforming chemistry of anode structures

FCC

Task 2 Approach: Develop liquid-fuel processing strategies for optimal compatibility with SOFC

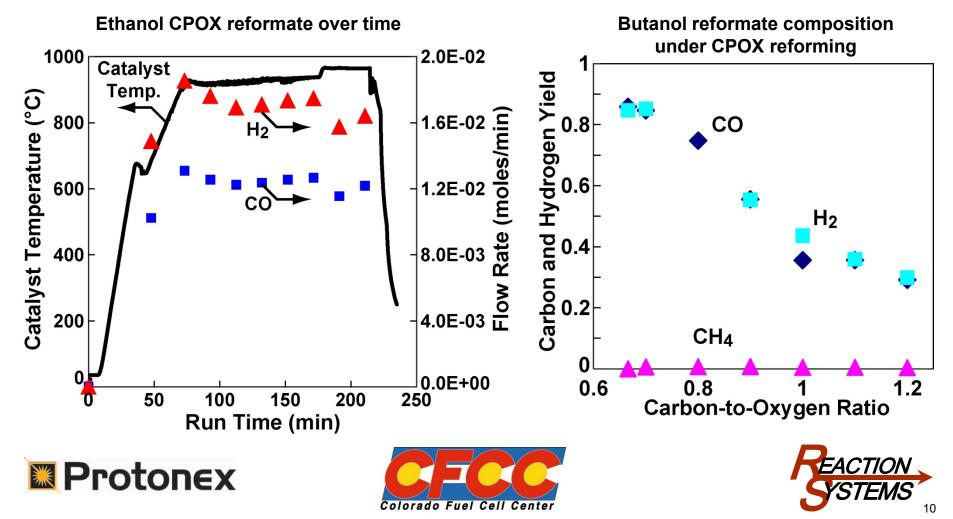


FCC

Colorado School of Mines

- Biomass-derived liquid fuels: ethanol (C₂H₆O) and butanol (C₄H₉OH)
 - Butanol energy density 75% of diesel
- High-pressure spray vaporizes liquid fuels
- Co-flow air stream mixes fuel vapors with oxidizer
- Catalytic partial oxidation fuel reforming converts fuels to syngas
 - Milestone: Syngas production from biomass-derived liquid-fuel (100%)
 - Milestone: Demonstrate steady operation with liquid-fuel reformate (80%)

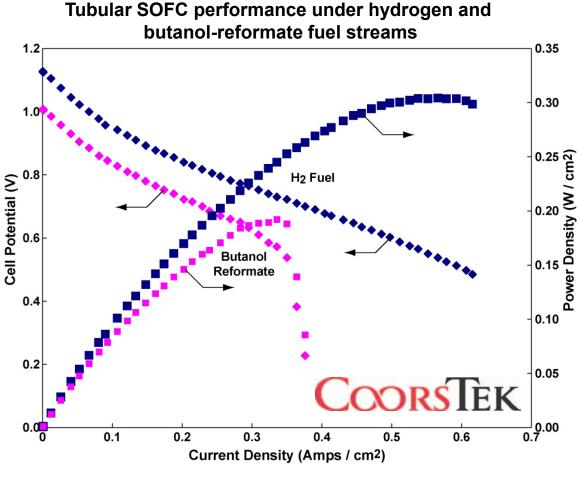
Process flow diagram of liquid-fuel reforming experiment



Task 2 Results: Established biomass-derived liquid-fuel processing for SOFC operation

FCC

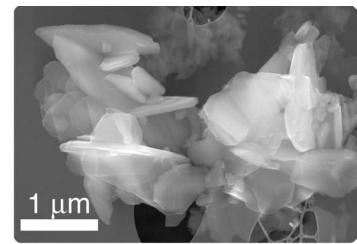
- Demonstrated ethanol and butanol CPOX reforming
 - Rhodium catalyst on hexaaluminate catalyst support


Task 2 Results: Demonstrated tubular SOFC operation under CPOX'ed butanol reformate

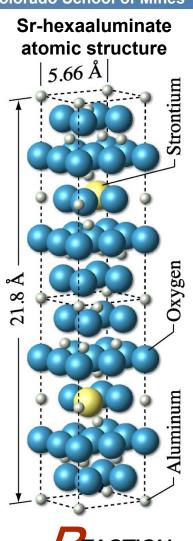
Colorado School of Mines

 Catalytic partial oxidation of butanol

- Nitrogen dilution
- Lower OCV
- Concentration polarization
- 35% decrease in cell power density
- Longer-term operation to be established



Task 3 Approach: Synthesize thermally stable fuelreforming catalysts to improve APU durability

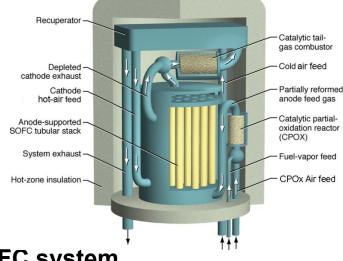

- Prepare stable hexaaluminate catalyst supports
 - Strontium disturbs Al₂O₃ crystal structure
 - Limits sintering in [1 0 0] axis
 - Enables high-temperature stability
 - Milestone: Prepare catalyst supports (100%)
- Evaluate catalysts for biomass fuel processing
 - Milestone: Demonstrate with biomass fuels (100%)
 - Tie to Task 2
 - Ethanol
 - Butanol

Micrograph of hexaaluminate

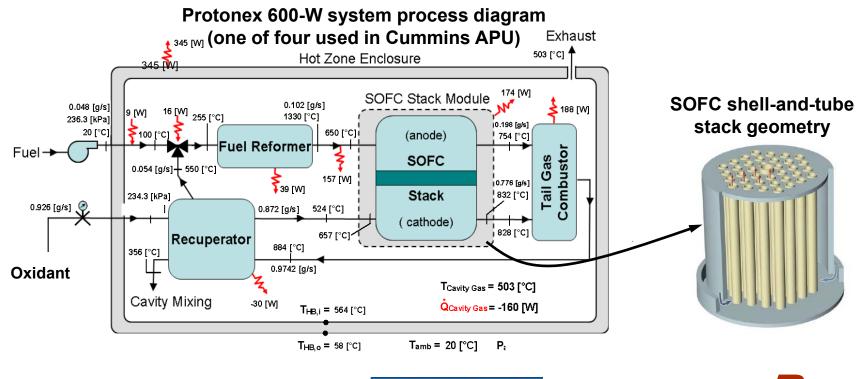
Task 4 Approach: Create optimal SOFC system designs through process and thermal modeling

FCC

Colorado School of Mines


- Develop physics-based component models
 - Detailed thermal management models
 - High-order electrochemistry models
 - Computational fluid dynamics
- Apply to systems design and simulation
 - Reduced-order models for steadystate process design and simulation
 - 1st-generation Protonex 4x600-W tubular SOFC system
 - Milestone: 90% complete
- Generate optimal system configuration(s) and operating parameters
 - Improved heat-transfer estimates within temperature control
 - Predict system performance under sensor uncertainty
 - Milestone: 75% complete

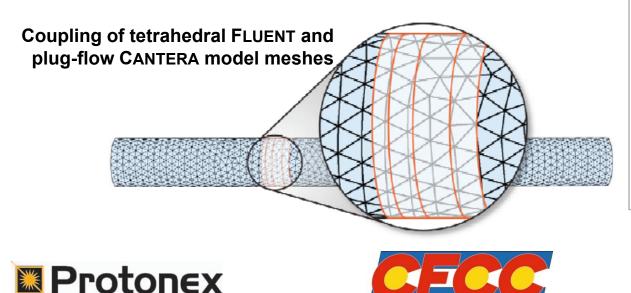
SOFC Hot Module

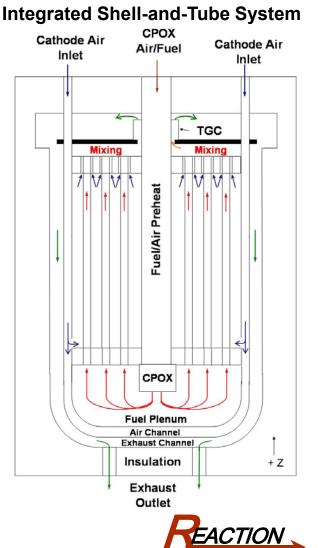


Task 4 Approach: Systems-level design explored from multiple viewpoints and modeling tools

FCC

- High-order CFD-electrochemical models
- Reduced-order thermal models coupled with 0-D process design
- Exergy-analysis models


Task 4 Approach: Hybrid CFD-electrochemical model bridges chemical and geometrical complexities


CFCC

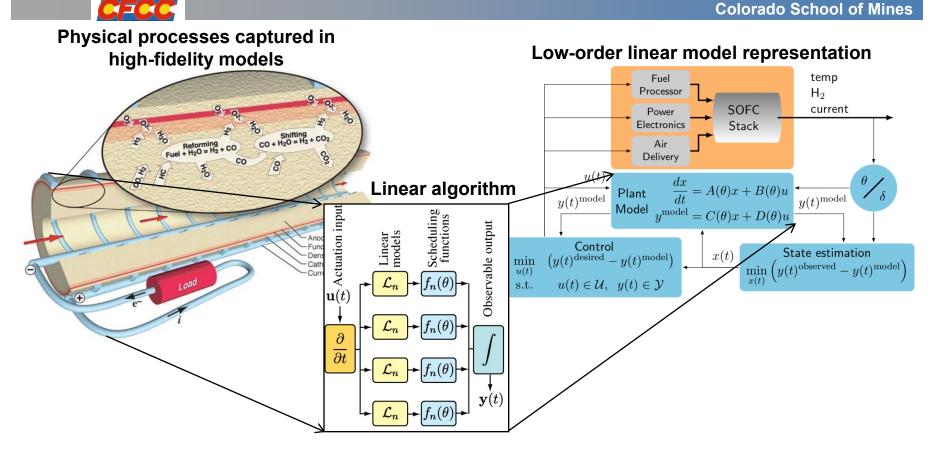
Colorado School of Mines

- Separate complex chemistry and flow
 - Chemically reacting anode flow: CANTERA
 - Cathode air flow: CFD in FLUENT
 - Iterate models to find coupled solution
- Enables high-fidelity system simulation
- Extension to thermally integrated system
 - Tail-gas combustor (TGC), CPOX processes

Colorado Fuel Cell Center

Task 4 Results: Coupled model predicts detailed performance information, internal stack conditions

- Radiation heat transfer
 - >75% of total heat transfer in tube bundle
 - Outer tubes act as radiation shields
 - Inner tubes up to 50°C warmer
- Resolve local O₂ concentration
 - Enables identification of oxygen-depletion zones


Oxygen-depletion zones Flow path lines Tube temperature O₂ mole fraction Tube temperature 747°C 747°C 0.21 0.17 722°C 722°C 697°C 697°C 0.13 ΕΑCΤΙΟΛ Protonex Colorado Fuel Cell Center

Cathode flow lines and tube temperature

SOFC stack geometry

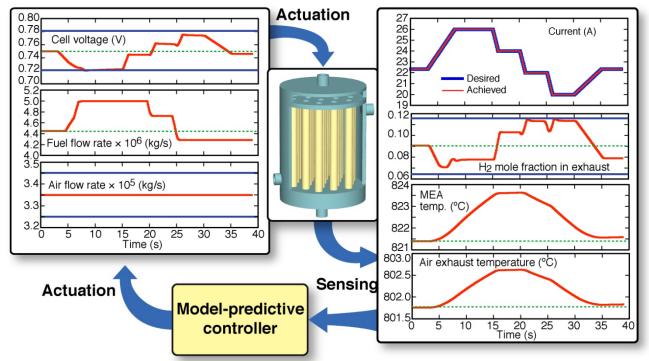
Task 5 Approach: Improve APU dynamic response through model-based predictive control

- Fast low-order models built from detailed physical models
 - Dimensionality reduction while matching dominant dynamic behavior

Task 5 Approach: Physics-based models are reduced for use in rapid model-predictive control

FCC

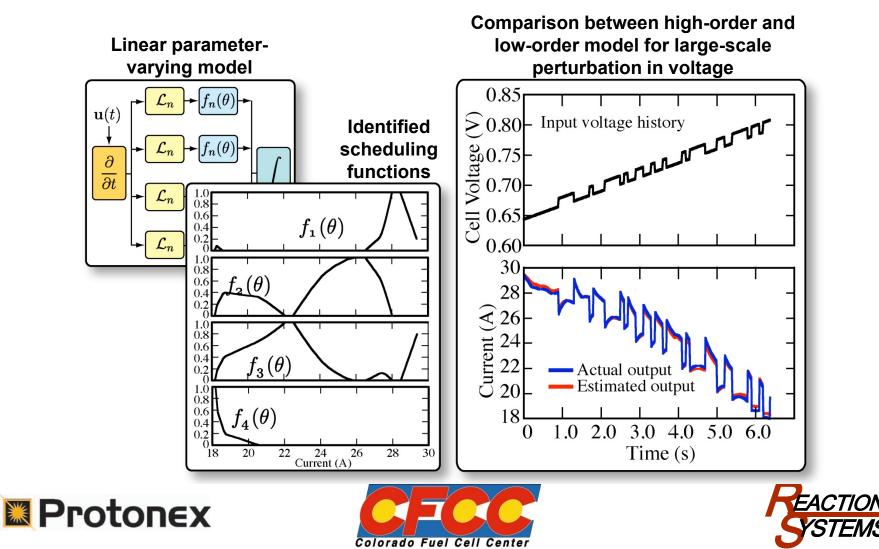
- Reduce slow, high-order physics-based models
 - Employ sampling approach to high-order model reduction
- Create fast, low-order models for use in model-predictive control
 - Linear, parameter-varying model structure
 - Stable over wide APU-system operating range
 - Milestone: Model reduction of SOFC stack (100% complete)
 - Milestone: Model reduction of complete SOFC system (80% complete)
- Develop real-time control schemes to improve system response
 - Milestone: Model-predictive control of SOFC stack (100% complete)
 - Milestone: Model-predictive control of SOFC system (80% complete)
 - Milestone: Real-time model-predictive implementation (100% complete)



Task 5 Results: Demonstration of fuel-cell stack control with broad load variation

CFCC

- Control demonstrated using high-order physical model
 - Desired current trajectory (blue) achieved while meeting constraints on cell voltage, fuel flow rate, and hydrogen utilization
 - Validates reduced-order models


Task 5 Results: Reduced-order models match single-tube response over wide operating range

FCC

Colorado School of Mines

Scheduling functions select appropriate model for operating condition

Industrial collaborations: Protonex Technology **Corporation, Reaction Systems LLC, CoorsTek Inc.**

- **Protonex:** subcontractor to CSM; provide technical data and support
 - Hot-zone developer for EERE long-haul truck APU project
 - Subcontractor to Cummins Power (Program DE-FC26-01NT41244)
 - CSM system- / control-model results incorporated into Protonex designs
 - Task 4 and Task 5
 - Collaboration with CSM on next-generation SOFC materials (Task 1)
 - Leveraged by Sandia LDRD on high-temperature electrolysis
- **Reaction Systems: subcontractor to CSM for catalyst development**
 - Novel catalysts developed by Reaction Systems (Tasks 2 and 3)
 - Catalyst fundamental chemistry examined at CSM
 - Leveraged by Phase II SBIR program
 - Funded by Air Force Research Lab (Contract #FA8650-07-C-2722)
- CoorsTek, Inc.: Tubular SOFC supplier (Tasks 1 and 2)

Future work

- Task 1: Next-generation SOFC materials and architectures
 - Use Ni-free perovskite anode materials in fabrication of complete cells
 - Use proton-conducting materials in fabrication of complete cells
- Task 2: Biomass-derived liquid-biofuel reforming
 - Quantify stability of catalyst and SOFC for CPOX-reforming of butanol
 - Extend testing to longer durations (1000 hours)
- Task 3: Fuel-reforming catalyst development
 - Conduct extended aging tests with catalysts and support materials
- Task 4: System-level modeling
 - Update tubular SOFC geometry to 3rd-generation Protonex design
 - Perform parameter-sensitivity study on mobile SOFC system concepts
- Task 5: System-control effort
 - Extend model-reduction and control strategy to Balance-of-Plant

Summary: CSM program improves robustness of liquid-hydrocarbon / biomass-fueled SOFC APUs

- **Relevance:**
 - Improve reliability: materials, architectures and system-level models
 - Expand operating windows: liquid-fuel reforming, system-control strategy
- Approach:
 - Create next-generation SOFC materials and reforming catalysts
 - Develop fuel-reforming, system-modeling, and system-control tools
 - Collaborate / validate new materials and designs with industrial partners
- **Results:**
 - Demonstrated improved SOFC operation on ethanol and butanol fuels _
 - System/control models developed and tuned to Protonex/Cummins APU
- Future work:
 - Long-term testing of SOFCs and catalysts under CPOX'ed butanol
 - Sensitivity analyses of system-level modeling tools

