

Colorado School of Mines

Biomass Fuel Cell Systems

Primary Investigator: Assistant Professor Neal P. Sullivan

Co-Investigators: Professors Robert Braun, Anthony M. Dean, Robert J. Kee, Ryan O'Hayre, Nigel Sammes, Tyrone Vincent

> Colorado School of Mines Golden, Colorado, USA

> > June 8, 2010

Project ID: FC076

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: Improve robustness of hydrocarbon- and biomass-fueled solid-oxide fuel cells and systems

CFCC

- Timeline
 - Project start date: 10/1/2009
 - Project end date: 9/30/2012
 - Percent complete: 20%
- Budget
 - Total project funding:
 - DOE Share: \$1,665,125
 - CSM Share: \$425,018
 - Funding received in FY09:
 - **\$1,665,125**
 - Funding for FY10: \$0
- Industrial Partners
 - CoorsTek, Inc. (Golden, CO)
 - Tubular SOFC supplier
 - Integrated ceramic heatexchanger / fuel-reformer
- Project Lead:
 - Colorado School of Mines

Barriers:

- Durability
 - Broaden SOFC operating windows under hydrocarbon / biomass fuels

Performance

- Increase efficiency through system optimization / BoP integration
- Optimize fuel-processing strategies
 - Biogas fuels of anaerobic digesters
 - Bio-derived liquid fuels (butanol)
- Transient operation
 - Develop model-predictive control algorithms
- Balance-of-Plant costs
 - Integrate BoP components
 - Decrease BoP fabrication costs
 - Decrease BoP materials costs

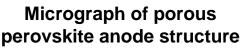
Objectives / Relevance: Improve durability and performance of SOFC systems while lowering costs

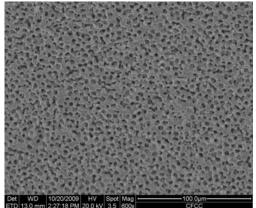
CFCC

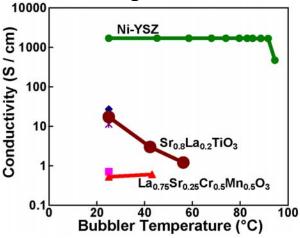
- Task 1: SOFC materials for robust operation on bio-fuels
 - Sulfur- and redox-tolerant materials to broaden SOFC operating windows
 - Develop Nickel-free, perovskite-based anodes w/ novel cell architectures
- Task 2: Fuel processing of bio-derived fuels
 - Utilize methane from anaerobic digesters of waste-water treatment plants
 - Develop fuel-processing for biomass-derived liquid fuels (butanol)
 - Decrease cost of fuel-processing balance-of-plant hardware
 - Integrated ceramic micro-channel heat exchangers / fuel reformer
- Task 3: Modeling and simulation
 - Develop chemically reacting flow models of fuel-processing hardware
 - Create design tools for micro-channel heat exchanger (HX) / reformer
 - Utilize model-predictive control to integrate system hardware
 - Improve APU dynamic response, reduce supplementary-storage need
 - Conduct thermal modeling of hot-zone system components
 - Employ system modeling: explore benefits of BoP-component integration

Task 1 Approach: Develop materials to improve SOFC durability under hydrocarbon / alcohol fuels

CFCC


- Develop nickel-free, perovskite-based, next-generation SOFC anodes
 - Perovskites more tolerant to sulfur, redox, and heavy hydrocarbons
 - Challenges in utilizing perovskites as anode materials in SOFCs
 - Materials stability during SOFC processing and cell operation
 - Electronic conductivity significantly lower than existing solutions
 - Catalytic activity may limit internal reforming of biomass fuels
 - Fabricate novel perovskites with unique material-doping strategies
 - Milestone: Synthesize first next-generation anode material (100%)
- Evaluate perovskite anode performance relative to Ni-YSZ baseline
 - Quantify stability, conductivity, and catalytic activity of new materials
 - Catalytic activity evaluated using unique Separated Anode Experiment
 - Decouples anode internal-reforming processes from electrochemistry
 - Materials conductivity currently under evaluation using 4-pt probe
 - Milestone: Demonstrate electronic conductivity > 10 S / cm (100%)
 - Materials stability measured using thermo-gravimetric analysis
 - Milestone: Demonstrate materials stability using TGA (10%)

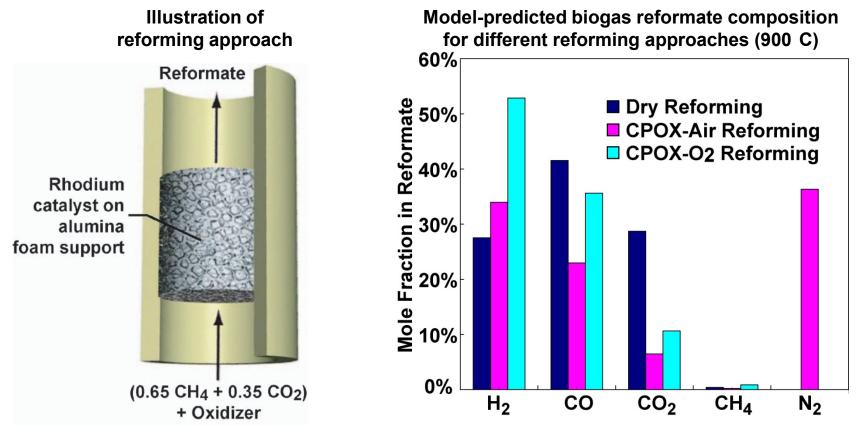

Task 1 Results: Perovskite materials synthesized; conductivity baselined against Ni-YSZ materials


Colorado School of Mines

- Perovskite anodes synthesized
 - $Sr_{0.8}La_{0.2}TiO_3 (SLT)$
 - High electronic conductivity
 - $(La_{0.75}Sr_{0.25})_{0.95}Mn_{0.5}Cr_{0.5}O_3 (LSCM)$
 - Internal reforming
 - Multi-phase SLT / LSCM ceramic anode
- DC conductivity baselined against Ni-YSZ
 - Materials-conductivity test stand commissioned
 - Vary temperature, gas composition
 - Ni-YSZ conductivity > 1000 S / cm
 - Stable across wide range of steam content
 - SLT conductivity > 17 S / cm
 - Decreases as steam content increases
 - LSCM conductivity < 1 S / cm</p>
 - Insufficient for SOFC-anode applications

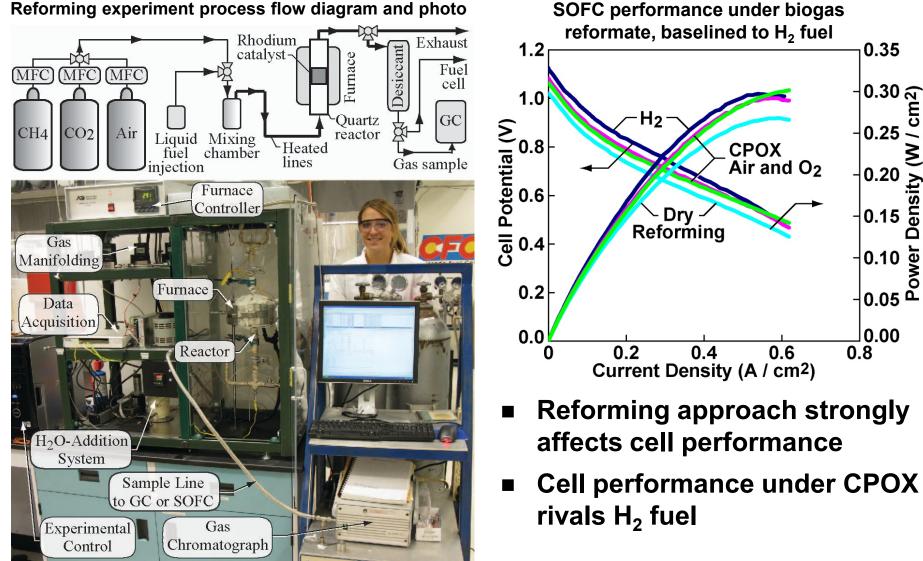
Conductivity under H₂ at 800°C increasing steam addition

Task 2 Approach: Develop bio-fuel processing strategies for optimal compatibility with SOFC

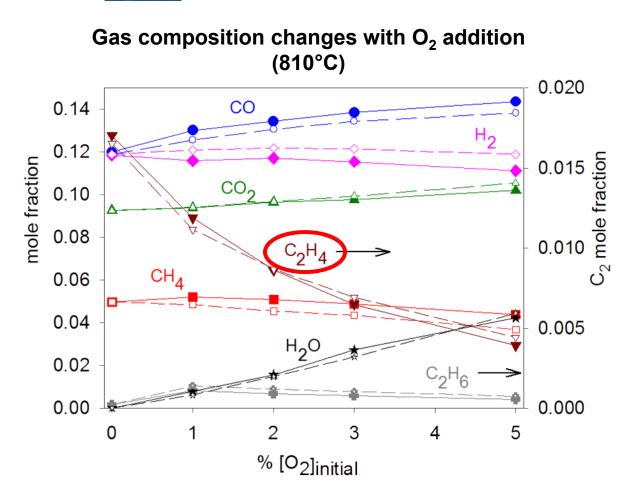

FCC

- Biogas fuels: anaerobic digesters at waste-water treatment facilities
 - Low-quality methane stream: 65% CH₄ / 35% CO₂
 - MW-scale power generation
- Explore fuel-reforming options to convert biogas to syngas (H₂ + CO)
 - Catalytic partial oxidation (CPOX air and / or O₂)
 - Simplest approach, but lowers system efficiency
 - Steam and / or dry reforming (H₂O and / or CO₂)
 - Endothermic, but improves system efficiency and cell performance
- Milestone: Demonstrate biogas-reforming reactor (100%)
- Milestone: Identify optimal reforming conditions (25%)
- Milestone: Demonstrate SOFC operation on biogas reformate (75%)
- Biomass-derived liquid fuels: butanol (C₄H₉OH)
 - Butanol energy density 75% of diesel
 - Milestone: Demonstrate integrated liquid-fuel vaporizer / reformer (100%)

Task 2 Results: Kinetic model for biogas reforming on Rh-based catalyst developed and implemented

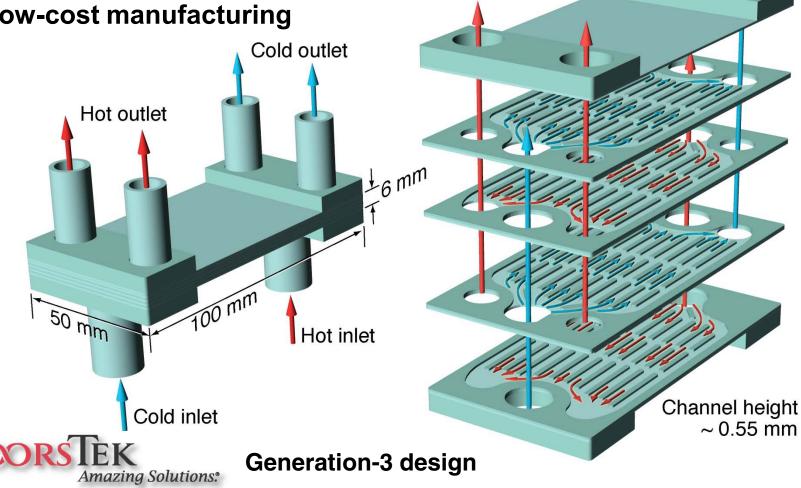

- Reacting-flow model with multi-step elementary reaction chemistry
- Exercised across numerous reforming approaches
- Excellent conversion of CH₄ and CO₂ to syngas at 900 C
 - Highest hydrogen content realized with CPOX using pure O_2

Task 2 Results: Bio-fuel reactor commissioned, integrated with SOFC-performance test stand


FCC

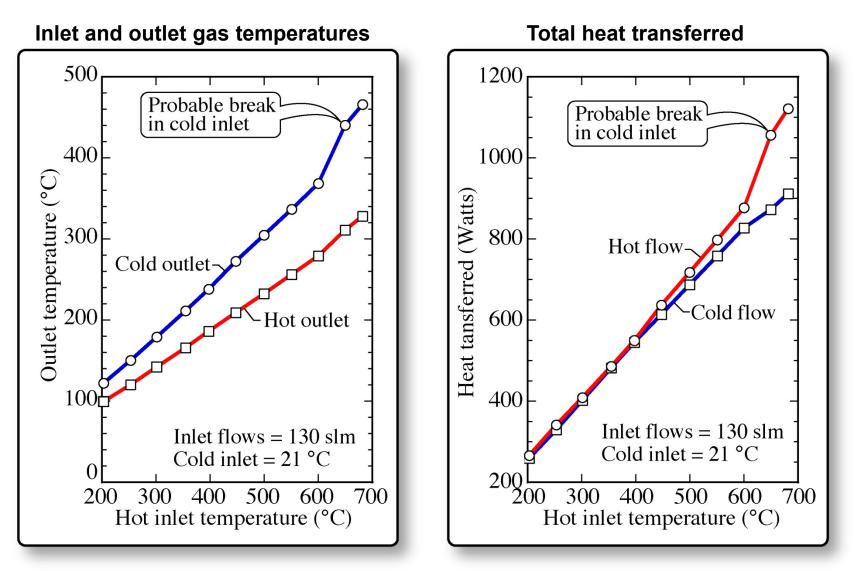
Task 2 Results: Carbon-deposit precursors in biogas can be selectively reduced through O₂ addition

FCC



- Ethylene (C₂H₄) is the common precursor to deposits
- O₂ additional leads to significant reduction in ethylene
- H₂ and CH₄ concentrations are relatively unchanged
- CO preferentially formed over CO₂

Task 2 Approach: Develop low-cost ceramic microchannel reactive heat exchangers for fuel reforming


- Low-cost alumina materials
- **Co-sintered layers: Single-body device**
- Low-cost manufacturing

Task 2 Result: Experimental results demonstrate ceramic micro-channel HX at 700°C hot-inlet temp

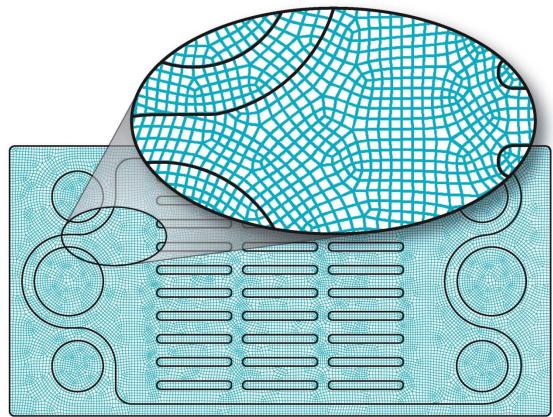
CFCC

Task 3 Approach: Provide modeling support for Tasks 1 and 2 using CFD and chemically reacting flow tools

CFCC

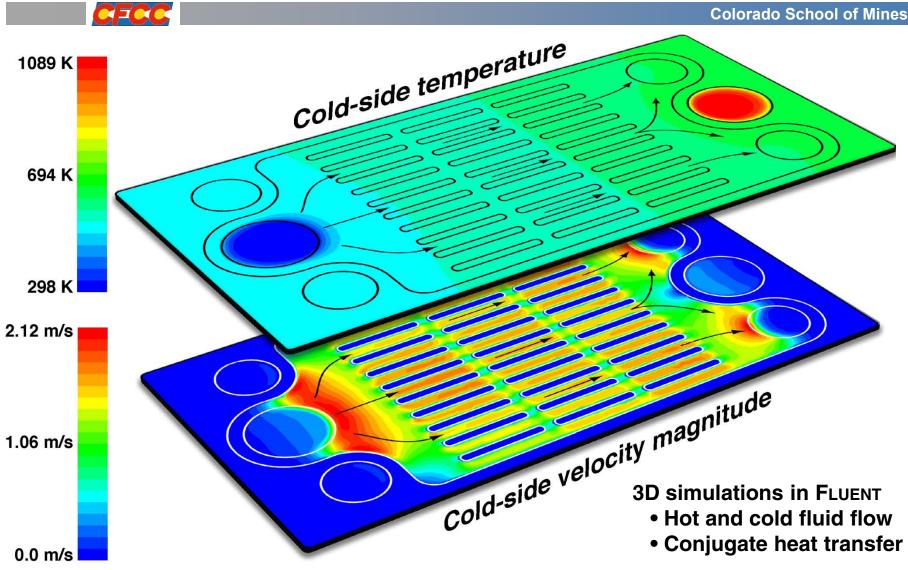
- Task 3a: Design tools for ceramic micro-channel reactive heat exch
 - ANSYS-FLUENT Computational Fluid Dynamics software
 - Flow through complex heat-exchanger channel geometries
 - CANTERA chemically reacting flow software
 - Open-source code under development at Sandia National Labs
 - Elementary chemical kinetics for fuel-reforming simulations
 - Two models integrated through FLUENT "User-Defined Functions" feature
 - Enables high-fidelity chemically reacting flow with high-fidelity CFD
- Task 3b: Model-predictive control for dynamic-load following
 - Map high-fidelity CANTERA model results to rapid low-order linear models
 - Apply to fuel-reformer hardware for dynamic control of pump and blower
- Task 3c: System-level modeling tools to advance thermal integration
 - Map ANSYS-FLUENT results to lower-order hot-zone thermal models
 - Utilize system tools to estimate benefits of thermal-integration strategies
 - Integrated reactive heat exchangers

Task 3a Approach: CFD and chemically reacting flow models integrated to provide HX-design guidance



CFCC

Colorado School of Mines

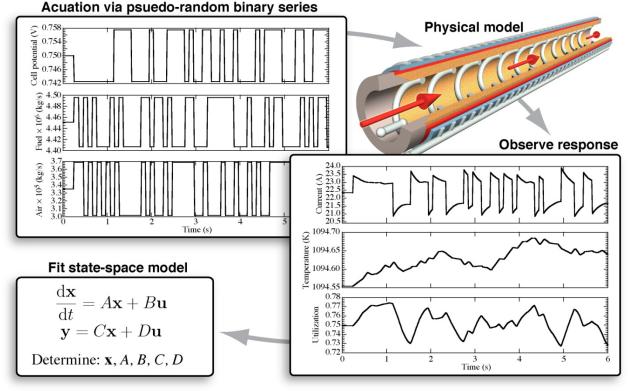

- ANSYS-FLUENT software utilized for computational fluid dynamics
- CANTERA software developed for chemically reacting flow simulation
- **Two models integrated in FLUENT "User-Defined Functions" feature**

Numerical mesh used in FLUENT simulations

Task 3a Result: Models indicate that baseline design shows axially uniform flow and temperature fields

Efforts leveraged by current NETL program at Colorado School of Mines

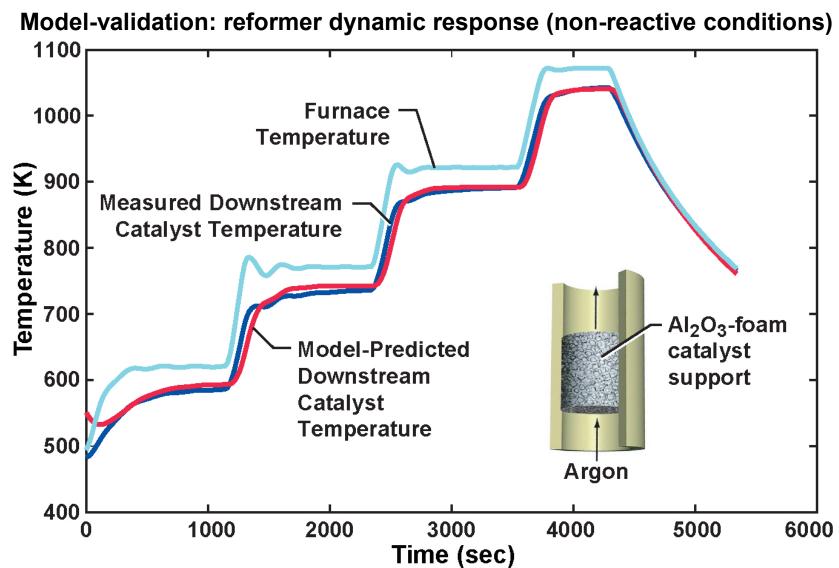
Task 3b Approach: Extend high-fidelity chemically reacting flow models to model-predictive control



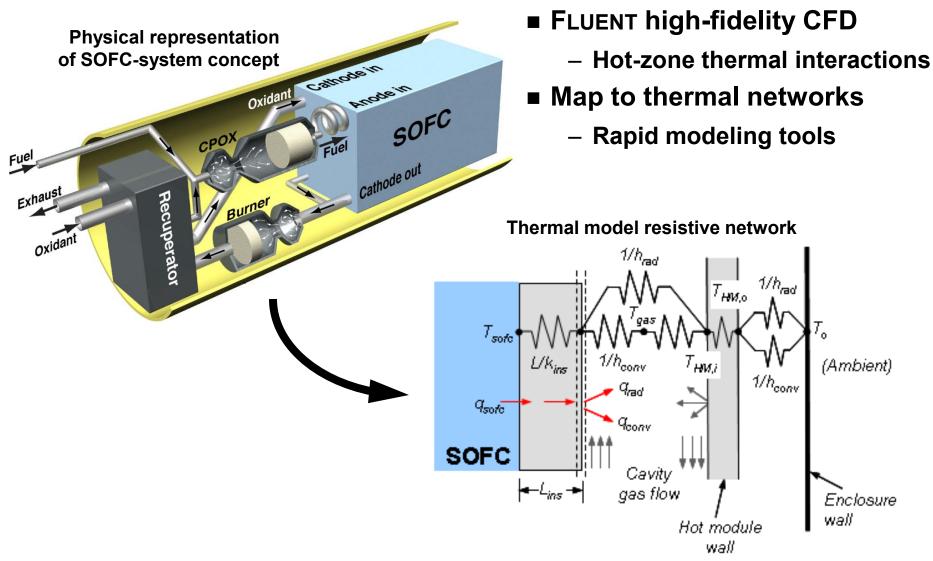
CFC

Colorado School of Mines

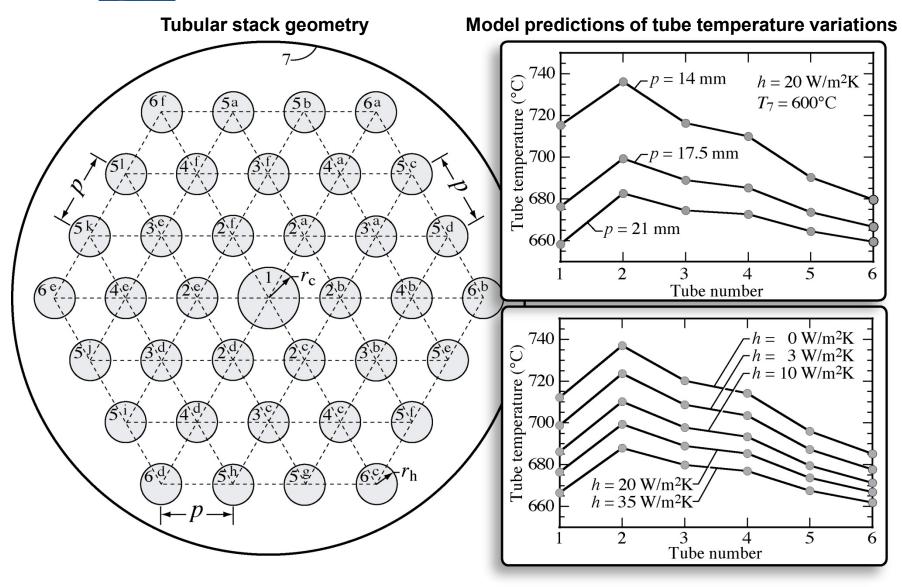
- Map high-fidelity CANTERA model results to rapid linear models
- Apply to dynamic control of fuel-reformer hardware
- Validate models with experimental apparatus
 - Milestone: Establish experimental fuel-reformer test bed (30% Task 2)


Mapping of high-fidelity physical models to rapid low-order linear models

Task 3b Result: Dynamic model of reformer developed; tuned to thermal response of experiment



Task 3c Approach: Apply hot-zone modeling tools for creation of lower-order thermal networks



Task 3c Result: Radiative model of tubular SOFC hot zone shows impacts of cell pitch on temperature

Industrial collaborations: CoorsTek Inc., Golden, CO

FCC

- Largest ceramics company in the United States
- Supplier of SOFCs and materials for use across multiple tasks
 - Task 1: Provider of baseline Ni-YSZ materials
 - CSM compares Ni-YSZ to next-generation perovskite anodes
 - Task 2: Supplier of tubular SOFCs
 - CSM adds cathode layer to CoorsTek anode-electrolyte assemblies
 - CSM evaluates cell performance under bio-fuels reformate streams
 - Task 2: Fabricate ceramic micro-channel heat exchangers
 - CSM adds catalyst to reactive side of micro-channel heat exchanger
 - CSM develops test protocol, evaluates performance of reactive HX
 - CSM develops computational modeling to provide design guidance

Future work

- Task 1: Next-generation SOFC materials and architectures
 - Use Ni-free perovskite anode materials in fabrication of complete cells
 - Use proton-conducting materials in fabrication of complete cells
- Task 2: Reforming of biomass-derived fuels
 - Widen biogas operating windows: steam reforming, anode recycle
 - Establish fuel-processing of biomass-derived liquid fuel (butanol)
 - Validate processing strategies on operational SOFCs
- Task 3: Modeling and simulation
 - Task 3a: Ceramic micro-channel reactive heat exchanger
 - Add chemically reacting flow to established FLUENT CFD model
 - Exercise model; explore integrated reformer-HX operating windows
 - Task 3b: Model-predictive control of fuel-reforming BoP hardware
 - Expand mapping of high-fidelity models to rapid linear models
 - Develop control algorithms; validate on experimental facility
 - Task 3c: Thermal modeling of SOFC stack and system
 - Predict impacts of integrated reformer / HX on system efficiency

Summary: CSM program is focused on improving system robustness, decreasing BoP costs

CFCC

- Relevance
 - Improve durability: advanced materials, improved control strategies
 - Decrease costs: Develop low-cost integrated reactive heat exchangers
- Approach
 - Create next-generation SOFC materials
 - Optimize fuel-reforming strategies for biomass-derived fuel sources
- Results
 - Demonstrated processing of next-generation SOFC-anode materials
 - Demonstrated modeling and experimentation for trouble-free SOFC operation on biogas reformate
 - Demonstrated operation of low-cost ceramic micro-channel heat exch.
- Future work
 - Establish SOFC operation using nickel-free perovskite anode materials
 - Define trouble-free cell operation on biomass-derived liquid fuel (butanol)
 - Extend heat-exchanger models to include chemically reacting flow
 - Explore effect of integrated reactive heat exchanger on system efficiency