2010 DOE Hydrogen Program

MANUFACTURING OF LOW-COST, DURABLE MEMBRANE ELECTRODE ASSEMBLIES ENGINEERED FOR RAPID CONDITIONING

PI: F. Colin Busby W. L. Gore & Associates, Inc. 6/11/2010

Project ID # MN004

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Budget

- Total Project Funding: \$4.4MM
 - \$2.8MM DOE Share
 - \$1.6MM Contractor Share
- Received in FY09: \$654k
 - \$890k spent as of 4/8/10
- Funding for FY10: \$700k

Barriers Addressed

- Lack of High-Volume MEA Processes
- Stack Material & Mfg. Cost
- MEA Durability

Timeline

- Project start: October 1, 2008
- Project end: March 31, 2012
- 35% Percent Complete as of 4/8/10

Partners

- University of Delaware (UD)
 - MEA Mechanical Modeling
- Penn State University (PSU)
 - Fuel Cell Heat / Water Management Modeling & Validation
- UTC Power, Inc. (UTCP)
 Stack Testing
- W. L. Gore & Associates, Inc. (Gore)
 - Project Lead

Table 3.4.3 Technical Targets: 80-kW _e (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen [®]							
Characteristic	Units	2003 Status	2005 Status	2010	2015		
Cost ^e	\$ / kW _e	200	70 ^f	25	15		
Durability with cycling	hours	N/A	2,000 ^g	5,000 ^h	5,000 ^h		

Relevance: Overall Objective

The overall objective of this project is to develop unique, high-volume¹ manufacturing processes that will produce low-cost², durable³, high-power density⁴ 3L MEAs⁵ that require little or no stack conditioning⁶.

- 1. Mfg. process scalable to fuel cell industry MEA volumes of at least 500k systems/year
- 2. Mfg. process consistent with achieving \$15/kW_e DOE 2015 transportation stack cost target
- 3. The product made in the manufacturing process should be at least as durable as the MEA made in the current process for relevant automotive duty cycling test protocols
- 4. The product developed using the new process must demonstrate power density greater or equal to that of the MEA made by the current process for relevant automotive operating conditions
- 5. Product form is 3 layer MEA roll-good (Anode Electrode + Membrane + Cathode Electrode)
- 6. The stack break-in time should be reduced by at least 50 % compared to the product made in today's process, and break-in strategies employed must be consistent with cost targets

Table 3.4.3 Technical Targets: 80-kWe (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen ^ª							
Characteristic	Units	2003 Status	2005 Status	2010	2015		
Cost ^e	\$ / kW _e	200	70 ^f	25	15		
Durability with cycling	hours	N/A	2,000 ^g	5,000 ^h	5,000 ^h		

Relevance: Objectives

- Develop a relevant high-volume cost model for membrane electrode assembly (MEA) production and estimate potential savings for an MEA made in an improved process (Gore)
 - Estimate potential savings to justify kick-off of new process development
 - Evaluate potential for new process to achieve DOE cost targets prior to process scale-up (Go / No-Go Decision)
 FY '11
- R&D equipment procurement and qualification (Gore)
 - Low-cost membrane coating
 FY '09
 - Low-cost cathode electrode coating
 FY '09
 - Low-cost anode electrode coating

FY '09

FY '09

Relevance: Objectives

- Low-cost MEA R&D
 - -New Process Exploration (Gore)
 - Investigate equipment configuration for MEA production
 - Investigate raw material formulations
 - Map out process windows for each layer of the MEA
 - -Fuel Cell Heat & Water Management Modeling & Validation (PSU) FY '10
 - Low cost processes result in a different range of electrode properties
 - Electrode and GDL thermal, geometric, & transport properties and interactions need to be optimized efficiently to meet project goals
 - Multi-layer Mechanical Modeling (UD)
 - Develop a deeper understanding of MEA failure mechanisms
 - Use model to optimize mechanical durability of the MEA structure targeted by the new low-cost process
 - -MEA optimization
 - Utilize modeling results & designed experiments
- Conditioning
- Scale Up
- Stack Validation

FY '09 & '10

FY '09 & '10

FY' 11

FY '11

FY '11

FY '11

Approach: Summary

- Reduce MEA & Stack Costs
 - Reduce the cost of intermediate backer materials which are scrapped
 - Reduce number & cost of coating passes
 - Improve safety & reduce process cost by minimizing use of solvents
 - Reduce required conditioning time & costs
- Optimize Durability
 - Balance tradeoffs between mechanical properties and performance of the 3L construction
- Enabling Technologies:
 - Direct coating: Use coating to form at least one membrane–electrode interface
 - Gore's advanced ePTFE membrane reinforcement & advanced PFSA ionomers enable durable, high-performance MEAs
 - Utilize modeling of mechanical stress and heat / water management to accelerate lowcost MEA optimization
 - Advanced fuel cell testing & diagnostics

Approach:

- Low-cost MEA R&D
 - R&D Equipment Procurement and Qualification
 - Primary path
 - Direct coated cathode on a backer-supported reinforced membrane
 - Direct coated anode on 2-layer intermediate
 - Alternate path
 - Direct coat anode on supported ¹/₂ membrane
 - Direct coat cathode on supported 1/2 membrane
 - Bond the membrane-membrane interface of the 1.5 layer webs to make a 3-layer web

Approach: Low-Cost MEA Mfg Process: Primary Path

High-Volume, Low-Cost, Full Width MEA Production

- Reduce the cost of intermediate backer materials which are scrapped
- Reduce number & cost of coating passes
- Improve safety & reduce process cost by minimizing use of solvents
- Reduce required conditioning time & costs

Approach: Mechanical Modeling

Model Concept:

Develop a layered structure MEA mechanical model using non-linear (viscoelastic & viscoplastic) membrane and electrode properties to predict MEA stresses for input temperature & relative humidity cycling scenarios

- Devise & perform experiments to determine mechanical properties of MEA materials as functions of:
 - Temperature
 - Humidity
 - Time
- Use numerical modeling to predict mechanical response of MEA during cell operation and accelerated testing
- Use model to explore new MEA designs and optimize prototypes that will be made in the new low-cost process

Approach: Mechanical Modeling MTS Tensile Tester RT/5

Temperature and Relative Humidity Capability: T: 25 °C - 85 °C; RH: 30-90%

NAFION is a registered trademark of E. I. DuPont de Nemours & Company

Approach: Mechanical Modeling Constitutive Model: Visco-elastic-plastic Model

Technical Accomplishments & Progress: Summary

- Test Current Commercial MEA (Gore)
 - Power density baseline testing
 - Conditioning baseline testing
 - Mechanical durability baseline testing
 - Chemical durability baseline testing

FY08 Completed FY08 Completed FY08 Completed FY08 Completed

Cost Model Current Commercial MEA (Gore)

- Model generic decal lamination process
- Perform raw material sensitivity analysis

FY08 Completed 100% Complete

- Mechanical Modeling (UD)
 - Layered model development
 - RH & time-dependent mechanical testing

90% Complete 35% Complete

Technical Accomplishments & Progress: Summary

- Equipment Procurement and Qualification (Gore)
 - Membrane coating
 - Cathode coating
 - Anode coating

100% Complete100% Complete60% Complete

MEA Alternative Concepts Generation and New Process Design (Gore)

- Process feasibility screening
- Determine primary and alternative paths
- Direct coated cathode
 - Power density baseline testing
 - Electrochemical diagnostics
- Direct coated anode
 - Power density baseline testing

75% Complete100% Complete25% Complete

35% Complete

Technical Accomplishments:

3L MEA Manufacturing Process Cost Model

Cost model results indicate that a new 3L MEA process has potential to reduce MEA cost by 25%

Process Waste Map

Membrane Coating

Process Costs	Primary forms of waste	Modeled Process Improvements
lonomer solution	line losses, edge trim, membrane thickness	Membrane thickness reduction
ePTFE	edge trim	
Backers	all backers	No backers
Solvent/disposables	all	
Process/MOH	time	
DL	time	

Electrode Coating

Process Costs	Primary forms of waste	Modeled Process Improvements
Catalyst	line losses, edge trim, electrode residuals	Reduce scrap with better coating process
Backers	all backers	No backers
Solvent/disposables	all	
Process/MOH	time	
DL	time	

3 Layer Roll-Good Finishing Operations

Process Costs	Primary forms of waste	Modeled Process Improvements	
Electrode	edge trim	Eliminate this process	
Membrane	edge trim	Eliminate this process	
Process/MOH	time	Eliminate this process	cnoc
DL	time	Eliminate this process	Creative Tech

Technical Accomplishments: Single-Variable Sensitivity Analysis Base Case (0.4 mg Pt/cm² total loading), Improved Process

Key Input Assumptions and Justification

Category	Description	Base Case	Sensitivity Range	Sensitivity notes
	Pt cost (\$ / Troy Ounce)	1100	640 - 2060	Min: mean real price ³ Max: 2008 monthly avg maximum ⁴
Catalvet	Catalyst process mark-up	20%	5 - 30%	Based on Gore interactions with catalyst suppliers
Galaiysi	Total loading (mg Pt-Group Metal / cm2)	0.40	0.2 - 0.75	Min: DOE 2015 target ⁵ , table 3.4.12 Max: 2005 TIAX Report ² Table 14
	Pt reclaim credit from manufacturing scrap	95%	90 - 98%	Based on Gore interactions with catalyst suppliers
lonomer	Ionomer cost (\$ / Ib)	88	22 - 110	2005 TIAX Report ² Table 20 (\$20 - \$100/lb in 2005 dollars)
Coating	Membrane process cost (\$ / m2)	2.18	1.00 - 4.00	Gore assumption, MOH & DL only, adapted from TIAX methodology
Coating	Combined electrode coating process cost (\$ / m2)	6.00	3.00 - 12.00	Gore assumption, MOH & DL only, adapted from TIAX methodology

References

1 2008 TIAX Tech Team Review "Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications" DE-AD36-06GO26044

2 2005 TIAX Report "Cost Analysis of PEM Fuel Cell Systems for Transportation" NREL/SR-560-39104

3 2004 TIAX "Platinum Availability and Economics for PEMFC Commercialization" DE-FC04-01AL67601

4 http://www.platinum.matthey.com/prices/price_charts.html

5 http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

Technical Accomplishments: Direct Coated (DC) Electrodes

Scanning electron microscopy images of direct-coated electrodes on GORE-SELECT® Membrane

GORE, GORE-SELECT and designs are trademarks of W. L. Gore & Associates, Inc.

Technical Accomplishments:

DC Anode: Power Density

Performance of an MEA made with DC anode is comparable to a commercial control MEA. Due to process challenges that have since been overcome, DC anode Pt loadings were higher than the current commercial control anode for this data set.

Technical Accomplishments:

Direct Coated Cathode: Power Density

Technical Accomplishments: Direct Coated Cathode: Power Density

 Current interrupt resistance accounts for most of the difference between the direct coated cathode MEA and the commercial control MEA in the ohmic region of the pol curve (~200 to ~1,000 mA/cm²)

Technical Accomplishments: DC Cathode Electrochemical Diagnostics

- Current interrupt resistance and high frequency resistance correlate well with performance data in FA conditions, where ohmic losses are very significant
- Electrode ionic resistance is inversely correlated to performance
- · Direct coating changes water management modeling has potential to accelerate development

Technical Accomplishments: DC Cathode Electrochemical Diagnostics

- Current interrupt resistance and high frequency resistance correlate well with performance data in FA conditions, where ohmic losses are very significant
- Electrode ionic resistance is inversely correlated to performance
- Direct coating changes water management modeling has potential to accelerate development

Technical Accomplishments:

DC Cathode Electrochemical Diagnostics

- Standardized protocol that combines BOL robustness testing with key cathode diagnostics at wet and dry conditions
- Test summary
 - Pre-Conditioning Diagnostics

Integrated I-V to quantify oxidized impurities which are associated with conditioning time

- Cleaning Cyclic Voltammograms (CVs)
- CV, H₂ Cross-Over, Electrochemical Impedance Spectroscopy (EIS)
- Conditioning
- Saturated and Super-Saturated Performance
 - Polarization Curves, Current Interrupt Resistance, and Stoich Sensitivity
- Saturated Diagnostics
 - He/O₂, O₂ Tafel
 - CV, H₂ Cross-Over, EIS

Determined flooding sensitivity is the biggest gap to close for DC cathode

- Sub-Saturated and Hot Sub-Saturated Performance
 - Polarization Curves, Current Interrupt Resistance, and Stoich Sensitivity
- Sub-Saturated Diagnostics
 - He/O₂, O₂ Tafel
 - CV, H₂ Cross-Over, EIS

Investigated impact of directcoated electrode structure on molecular diffusion

Technical Accomplishments: Durable 12 μm GORE-SELECT® Membrane

Gore N₂ RH Cycling Protocol:

Tcell (C)	Pressure (kPa)	Flow (Anode/Cathode, cc/min)
80	270	500 N ₂ / 1000 N ₂

- Cycle between dry feed gas and humidified feed gas (sparger bottle temp = 94°C)
- Dry feed gas hold time: 50 sec.
- Humidified feed gas hold time: 10 sec.
- For further information, reference:
 W. Liu, M. Crum
 ECS Transactions 3, 531-540 (2007)

Note: 12 µm Membrane Testing Not Funded by DOE

GORE, GORE-SELECT and designs are trademarks of W. L. Gore & Associates, Inc.

Technical Accomplishments:

9,000 Hour GORE-SELECT® Membrane Durability in 808C Duty Cycle

Table 3.4.11 Technical Targets: Membranes for Transportation Applications					
Characteristic	Units	2005 Status ^a	2010	2015	
Durability with cycling At operating temperature of <u><</u> 80°C	hours	~2,000 °	5,000 ^f	5,000 ^f	ĺ
At operating temperature of >80°C	hours	N/A ^g	2,000	5,000 *	ļ
Oxygen cross-over	mA / cm²	5	2	2	
Hydrogen cross-over	mA / cm ⁻	5	2	2	

GORE, GORE-SELECT and designs are trademarks of W. L. Gore & Associates, Inc.

Technical Accomplishments: Mechanical Modeling

Determining Parameters for the Numerical Model

Creative Technolog

Technical Accomplishments: Mechanical Modeling

Visco-Elastic Relaxation

Simulation Results Compared with the Experimental Data

Technical Accomplishments: Mechanical Modeling 2D Plane Strain Finite Element Model for a Single Cell

• Membrane's material properties at various temperature and humidity values acquired through experiments

• Loading consists of pre-stressing and hygrothermal variations

STRESS (MPa)

Proposed Future Work for FY10: Summary

Proposed Future Work for FY10: Water Management Modeling

- Determine critical GDL characteristics, understand cost-performance relationships, and select alternative GDL options for fuel cell testing
- Measure unknown critical properties of GDLs: Liquid Water distribution (neutron imaging) and polarization measurement including quantification of mass, ionic, and kinetic losses as well as overall water transport coefficient
- Comprehensive modeling of effects of various GDL, electrode, and membrane parameters on performance, RH distribution, temperature gradient and water accumulation
- Characterize interactions between alternative GDL's and break-in and performance testing

Proposed Future Work Mechanical Modeling

Static and time dependent (viscoelastic/viscoplastic) testing of baseline materials
Numerical simulation of stress evolution around MEA imperfection

Creative Technologies

NAFION is a registered trademark of E. I. DuPont de Nemours & Company

Proposed Future Work for FY10:

- · Coating equipment which had long lead times was purchased in Phase 1
- Only 20% of the project budget was spent as of 4/8/10
- When direct coating equipment was installed and qualified in March, more resources were added to the project
- Spending and technical progress are both in agreement with the project forecast

Collaborations

- University of Delaware
 - MEA Mechanical Modeling
 - A. Karlsson & M. Santare
- Penn State University*
 - Fuel Cell Heat and Water Management Modeling and Validation
 - M. Mench
- UTC Power, Inc.
 - Stack Testing
 - T. Madden
- W. L. Gore & Associates, Inc.
 - Project Lead
 - F. Busby

*New partner added for FY10

Summary (1)

- The overall objective of this project is to develop unique, highvolume manufacturing processes for low-cost, durable, high-power density 3L MEAs that require little or no stack conditioning.
- Approach:

-Reduce MEA & Stack Costs

- Reduce the cost of intermediate backer materials
- Reduce number & cost of coating passes
- Improve safety & reduce process cost by minimizing solvent use
- Reduce required conditioning time & costs

-Optimize Durability

Balance tradeoffs between mechanical properties and performance of the 3L construction

-Unique Enabling Technologies

- Direct Coating: Use to form *at least* one membrane-electrode interface
- Gore's Advanced ePTFE membrane reinforcement & advanced PFSA ionomers enable durable, high-performance MEAs
- Utilize modeling of mechanical stress and heat / water management to accelerate low-cost MEA optimization
- Advanced fuel cell testing & diagnostics

Summary (2)

Key Accomplishments

 Cost model results indicate that a new 3L MEA process has potential to reduce 3L MEA cost by 25%

- Development of direct coated anode and cathode electrodes is underway

- Primary and alternative paths have been determined
- Current density of direct coated electrodes on reinforced 12 µm membrane is equivalent to current commercial MEA
- Gore has demonstrated <u>9,000 hour membrane durability</u> (DOE 2015 target is 5,000 hours)
- Development of a layered structure <u>MEA mechanical model</u> using non-linear (viscoelastic & viscoplastic) polymer and electrode properties which will predict MEA durability for a variety of temperature & relative humidity cycling scenarios is underway
- The combination of Gore's advanced materials, expertise in MEA manufacturing, & fuel cell testing with the mechanical modeling experience of University of Delaware and the heat and water management experience of Penn State University enables a robust approach to development of a new low-cost MEA manufacturing process

Acknowledgements:

W. L. Gore & Associates, Inc.

- Will Johnson
- Glenn Shealy
- Mark Edmundson
- Wen Liu
- Simon Cleghorn
- Laura Keough

Department of Energy

- Jesse Adams
- Jill Gruber
- Pete Devlin

University of Delaware

- Anette Karlsson
- Mike Santare
- Melissa Lugo
- Narinder Singh

Penn State University

• Matthew M. Mench

UTC Power, Inc.

Thomas Madden

